country
$20 Bonus + 25% OFF
Securing Higher Grades Costing Your Pocket? Book Your Assignment at The Lowest Price Now!

Reliability Of High-Temperature Electronic

tag 0 Download10 Pages / 2,404 Words tag Add in library Click this icon and make it bookmark in your library to refer it later. GOT IT

Question:

Discuss about the Reliability of High-Temperature Electronic.

 

 

Answer:

Introduction

An insulated-gate bipolar transistor (IGBT) refers to a power semiconductor device usually with three terminals which is primarily used as an electrical switch. IGBTs are gaining great importance in the power electronics from both the served application and installed devices.

 Currently IGBT module is applicable in a range of applications ranging from wind power production, motor drives, industrial inverters and the HVDC converters (Byron, 2015). A Lot of focus is being put in place for the IGBT module to ensure higher power densities. The higher power densities requires the IGBT to operate under high temperatures. Due to that the system of the IGBT has to be improved to meet the requirements which can allow it to operate efficiently under such conditions of high temperatures.

The development of the IGBT power modules has been in the recent past been characterized by the frequent increase in power density with the main aim of reduction of costs of power. The demand for a high power density is directly associated with the current per chip. Increasing the current per chip results in an increase of temperature during operations as shown in the figure below (Christou, 2013). 

 

Analyses of the Problem

The generator of a wind turbine is usually controlled by a power converter which consists insulated gate bipolar transistors and other components. Increase in the wind speed results to proportional increase of the turbine speed which directly leads to production of high power density. There is a proportional increases in junction temperature with the increase in the power density which is being produced with the IGBT. The temperature which is produced is used to determine the output current which can be achieved by the generator (Claeys, 2013). A power converter which is configured as an H-bridge is usually used for validation. The converter is usually equipped with the Infineon adapter board which is used for monitoring of the thermal behaviour of the components which are usually under the real field conditions (Colin, 2015).

State of the Art literature review

There are many benefits which are associated with the use of module components which has high junction temperature capabilities such as; the possibility of sink’s thermal resistance increasing to ambient, this results in lower cost of the heat sink which has a lower performance such as the case of the windmill generator where higher liquid cooling temperatures are accepted.

Due to the increase in temperature all the components which are surrounding the module needs to be adjusted so as to work effectively without the reduction in lifetime. Once there is an increase in the temperature of the module components it call for high attention on thermal management to avoid destruction of the components (Cressler, 2012).

For thermal management, the lifetime IGBT module has to be estimate to determine the power cycling capability of the IGBT. Once the junction temperature is high, it results in high stress levels which the device has to undergo thus reduction in the cycle number of the device. The lifetime of the IGBT device in most cases is limited by the package technologies which include the soft soldering and wire bonding. There are new technologies which have been introduced to increase the number of cycles such as the XT technology which has overcome the limitation of the current technologies such as the wire soldering (Flandre, 2014).

HiPak Technology.

HiPak technology refers to the high power IGBTs which covers a wide range of voltage from 1700V to 6500 V and current such as 400A to 3600 A. This HiPak module exists in different forms such as the single IGBT, dual diode, dual IGBT and also in a chopper configuration.

Any IGBT module is made of IGBTs and diodes which are built on the basis substrates that are soldered to a base plate. At the terminals are conductor leads which are mainly used to provide an electrical connection from the electrical circuit to the outside of the module. Under high temperatures and current  (Jason, 2015). For the module to work effectively there are improvements which have to be made as discussed below.

 

Solution explanation and evaluation

There are many possibilities which I came up with to ensure that the IGBT module is capable of operating under high temperatures of 230oc.I proposed a lot of modification and adjustments to the module components, joining technology and thermal management as discussed below.

Chipset

The design of the IGBT and the diode chip require a lot of improvement to be able to operate at high temperatures. Controllable and soft switching is very essential when the chipsets are used in the modules with high temperature. This is due to the combination of the large stray inductance and high currents which will normally result in the snappy behaviour and a very high voltage during the turning off (Jones, 2013). For high current using the same technology, the platform has to be upgraded from the initial SPT to SPT+. The technology of the SPT+ works more efficiently as compared to the initial SPT, this is because it offers up to 15 % lower losses while it ensures to maintain the turn-off losses. As shown in figure 2 below.

The high temperature which is expected requires reliable and stable operations of all the devices which are beyond the limit. This requires a well-optimized termination design for the diode to reduce the leakages of high temperatures. The figure below shows a range of cool temperatures where by both the diode and the IGBT have been found out to be stable with no thermal runway which is under the direct application of a DC of about 1400V and 1700V which takes not less than 300 sec (Kolawa, 2015).

Package

There are four main functions of the packaging technology. They include: provision of a current path directly from Bus bar to the chip and back, cooling down the heat which is generated by the module, isolating the electrical contacts from one another and ensuring that the package has mechanical robustness. Considering the improvements which were done on the Gel, terminal, module soldering a new robust product with high voltage and the current were developed (Krozer, 2014). 

 

High-temperature capable Gel

The silicone Gels to be applied in the prevention of the partial discharge and also seal the atmospheric contaminants and moisture from getting into the system. Moreover, where the system has to remain operational there are environmental rules which require the junction temperature to be stored at -55oc (Lucian, 2012).

The current material which to be used for insulation is the silicone gel with the specification of operating between the range of -40 and 230oc.The new operational temperature and the new requirement of the chips called for verification of the characteristics of the material of two alternatives which are Gel  E and Gel S. For the selection of alternative gels, dielectric properties together the extended temperature range are the most crucial requirements. The selected potential alternatives gel it had to undergo many investigations and test (Mantooth, 2015).

Differential scanning calorimetry and thermos gravimetric analysis have to be carried out to be able to determine the thermal stability of the silicone gels which are to be selected. Thermal gravimetric indicated that both samples Gel R and Gel S dah lost the same amount of weight at the same temperature of 230oc.

Physical characterisation focused mainly on the thickness and hardness of the isolation of the materials and also to the components of the system. The main objective is to have an insulating material which is soft and has a good sealing (McCormick, 2011). Carrying out a comparison of the different Gels it is very clear that Gel E had the highest adhesion force.

Module Soldering with Spacer

The requirements of the packaging technologies increase due to the increase in the operational temperatures; this is aimed at ensuring a long lifetime and high reliability of the IGBT module. Some of the lifetime failures which are identified included; wire bond contact, large area solder joints and terminal solder joints.AS a result of that additional step which was not there initial has to be included in the process of soldering the substrates to the base plate. Where substrate edges are attached a flat aluminium are soldered to the base plate. Mechanically and the reproducible stable spacer is given as a result of these bond, which guarantees a small thickness of the solder. Therefore reducing the tilting of the substrate.

Modules without and with spacers have to undergone temperature swings to determine the importance of reliability (Parsons, 2013). Some substrate corners can be observed in all modules after they undergo cycling cracks in the substrate solder. Relating the solder thickness with the crack growth rate at their location it is clear that the locations which had the solder which was the thinnest had the highest crack growth rate as shown in figure 6 below. Therefore the application of spaces to better the cycling capability.

High Current Terminals

The contribution of resistive power losses of the module is increasing due to the increase in the semiconductor current ratings. Unwanted power impassions are caused by high currents from the bus bar to the power terminals. Moreover, they can cause reliability challenges as a result of the overheating of the internal conductor. This call for investigations of the current path (Willander, 2011).

Besides switching losses and dominant conduction, resistive losses happen at many points. On this kind of the module the losses which occur contribute greatly to the overall losses that are witnessed. The terminal contributes a lot to the resistive losses. The chip metallization, the bond wires and the wire bonds are few contributors.

To lower the losses that are generated in the terminal, it compulsory that the electrical resistance has to be lowered. Because there is no other good conductor which is affordable like copper it is important to change the geometry of the conductor which is being used (Podlesak, 2016). The terminals which are currently used in the HiPak module are shown in figure 7 below.

By the use of the current terminals which are used in the HiPak module, there is a significant reduction in the electrical resistance which is mainly achieved by making the current path shorter and balancing the current density in the conductor. At the same time maintaining the mechanical reliability. With this new designs of the terminals, the wind turbine generator can be able to work at even very high temperatures.

 

Materials used and their temperature limits.

The following materials were proposed to be used to enable the wind turbine generator operate at very high temperatures;

Aerogel Material; this material is used for insulation and has properties which allows it to perform under in high temperature environments. Aerogel is capable of withstanding high temperatures of up to 2000 degrees centigrade with very little or no transfer of heat to other components of the wind turbine generators. In that way it can be able to insulate the components of the generator effectively.

Nickel alloys; Due to the advancement in technology. Nickel alloys can be used in the wind turbine generators.

Niobium Alloys; is very dense when alloyed together with tungsten it can withstand high temperature of up 900 degree Celsius in that way it is much possible to be used in the manufacture of components of the wind turbine generator.

Molybdenum; this material shows very unique creeps and strength resistance and the ability to withstand very high temperatures molybdenum can be able to withstand up to a temperature of 12oo degrees centigrade

Conclusion

In conclusion, in most cases, the IGBT is used as an electronic switch in many electrical appliances. It has a wide application in electric power, such as; wind power generation, trains, electric cars, lamp ballasts, refrigerators, stereo systems and even in the air conditioning. (Claeys, 2013).

With the increase of the operating temperatures of the IGBT of the wind turbine generator. The user has the choice of utilising the operating temperatures to raise the output current or to increase the cooling cost. The IGBT module can increase its current output up to 12.5% if the operating temperatures are raised between 175oc to 230oc.For that reason good thermal management is very important considering the area in which the module is located.

There are many improvements which can be done to the components of the IGBT module to ensure that it is capable of operating at 230oc.The improvement which are to be done include:

The introduction of the HiPak technology, which can operate at very high temperatures and a wide range of voltage and current (Flandre, 2014).

Use of high Current terminals to reduce the unwanted power impassions which are caused by high currents from the bus bar to the power terminals. Other adjustments which were to be done included the Module Soldering with Spacer to ensure a long lifetime and high reliability of the IGBT module. Application of high temperature capable Gel which are used in the prevention of the partial discharge and also seal the atmospheric contaminants and moisture from getting into the system of the module (Claeys, 2013).

 

References

Byron, M. J. (2015). Papers presented at the Conference on High-Temperature Electronics. Chicago: Institute of Electrical and Electronics Engineers.

Christou, J. (2013). Reliability of High-Temperature Electronics. Texas: RIAC.

Claeys, C. L. (2013). Proceedings of the Symposium on Low-Temperature Electronics and High-Temperature Superconductivity. Chicago: The Electrochemical Society.

Colin, J. (2015). Fourth International High-Temperature Electronics Conference. Berlin: IEEE.

Cressler, J. D. (2012). Extreme Environment Electronics. Mnchester: CRC Press.

Flandre, D. (2014). Science and Technology of Semiconductor-On-Insulator Structures and Devices Operating in a Harsh Environment. Manchester: Springer Science & Business Media.

Jason, J. (2015). Proceedings of the Fourth Symposium on Low-Temperature Electronics and High-Temperature Superconductivity. Paris: The Electrochemical Society.

Jones, M. (2013). Diamond Switches for High-Temperature Electronics. Texas: United States. Department of the Air Force.

Kolawa, E. (2015). 1998 High-Temperature Electronic Materials, Devices and Sensors Conference. London: IEEE.

Krozer, F. V. (2014). High-temperature electronics: proceedings of Symposium E on High-Temperature Electronics. London: Elsevier.

Lucian, S. (2012). High Temperature Electronics Design for Aero Engine Controls and Health Monitoring. London: River Publishers.

Mantooth, A. (2015). Materials for High-Temperature Semiconductor Devices. Paris: National Academies.

McCormick, J. B. (2011). High-Temperature Electronics. London: Institute of Electrical and Electronics Engineers.

Parsons, J. D. (2013). N-Type SiC Rectifying Junctions for High Power, High-Temperature Electronics. London: Defense Technical Information Center.

Podlesak, T. (2016). High-Temperature Electronics. Chicago: CRC Press.

Willander, M. (2011). High-Temperature Electronics. Texas: Springer US. 

OR

Cite This Work

To export a reference to this article please select a referencing stye below:

My Assignment Help. (2019). Reliability Of High-Temperature Electronic. Retrieved from https://myassignmenthelp.com/free-samples/reliability-of-high-temperature-electronic.

" Reliability Of High-Temperature Electronic." My Assignment Help, 2019, https://myassignmenthelp.com/free-samples/reliability-of-high-temperature-electronic.

My Assignment Help (2019) Reliability Of High-Temperature Electronic [Online]. Available from: https://myassignmenthelp.com/free-samples/reliability-of-high-temperature-electronic
[Accessed 24 May 2020].

My Assignment Help. ' Reliability Of High-Temperature Electronic' (My Assignment Help, 2019) <https://myassignmenthelp.com/free-samples/reliability-of-high-temperature-electronic> accessed 24 May 2020.

My Assignment Help. Reliability Of High-Temperature Electronic [Internet]. My Assignment Help. 2019 [cited 24 May 2020]. Available from: https://myassignmenthelp.com/free-samples/reliability-of-high-temperature-electronic.


With a decade's experience in providing essay help, MyAssignmenthelp.com has emerged as the leading assignment writing company in Australia. We have gained our popularity not because we provide top-quality essay help, but because we understand students' needs. In order to help students, we have introduced proposal essay help, literature essay help, etc into our services. Some of our popular services include English essay help, nursing essay help, law essay help, MBA essay help and much more.

Latest Electrical Engineering Samples

ITECH4300 Research Skills And Academic Communication

Download : 0 | Pages : 17
  • Course Code: ITECH4300
  • University: Federation University
  • Country: Australia

Answer: Background information The scope of centrifugal pumps application is wide for, industrial, domestic, institutional and other fields. However, the existence of a big number of geometric parameters has made the processes of their design and prediction of performance a challenging task. Therefore, pump manufacturers have resorted to trial-and-error methods of testing prototypes to predict and optimize performance. However, this method is...

Read More arrow Tags: Australia Melbourne Science critical essay of no more than 2500 words  the focus is on your managerial capability in light of th University  

ITECH7410 Software Engineering Methodologies Method

Download : 0 | Pages : 9
  • Course Code: ITECH7410
  • University: Federation University
  • Country: Australia

Answer: Introduction The discovery of the Oral B PRO 5000 smart series that can be connected to the electricity for recharge and to be used in the maintenance of the oral health is one of the best ways of keeping the oral health. The technologies with the common power toothbrushes are majorly focused on the oscillation and the motion caused due to the rotation of the toothbrush. With this, it is a requirement of the use of smart guide hence g...

Read More arrow

ITEC10281 Systems Technology

Download : 0 | Pages : 2
  • Course Code: ITEC10281
  • University: Nottingham Trent University
  • Country: United Kingdom

Answer: Overview The system uses Arduino Atmega 1280 as it provides more ports in case the designer wishes to add more components. The first step was to set up a simulation on Proteus 8 Professional to see how the system runs before designing it on the live Arduino microcontroller. The intelligent traffic light controller first checks for any other modes before running the regular mode. The system uses the ultrasonic range finder to determine...

Read More arrow

BCO5501 Business Process Engineering 2

Download : 0 | Page : 1

Answer:

Part 1: Workflow Diagrams

Part 2: EPC

 

Embedded Signavio File

 

Bibliography

Chang, J. F. (2016). Business process management systems: strategy and implementation. CRC Press.

Doumeingts, G., & Browne, J. (Eds.). (2016). Modelling techniques for business process re-engineering and benchmarking. Springer.

Read More arrow Tags: Australia Melbourne Management accounts context and methods University of Melbourne 

MIET2131: Electrical Energy Storage Systems

Download : 0 | Pages : 7
  • Course Code: MIET2131
  • University: Royal Melbourne Institute Of Technology
  • Country: Australia

Answer: Q1: Components of a Battery A battery is composed of three main components including the anode, cathode as well as an electrolyte. The anode is the negative electrode or the reducing electrode which releases electrons to the external circuit and is often being oxidized during an electrochemical reaction. The cathode is the positive electrode or the oxidizing which receives the electrons released from the external circuits and is often r...

Read More arrow
Next
watch

Save Time & improve Grade

Just share Requriment and get customize Solution.

question
We will use e-mail only for:

arrow Communication regarding your orders

arrow To send you invoices, and other billing info

arrow To provide you with information of offers and other benefits

1,316,470

Orders

4.9/5

Overall Rating

5,074

Experts

Our Amazing Features

delivery

On Time Delivery

Our writers make sure that all orders are submitted, prior to the deadline.

work

Plagiarism Free Work

Using reliable plagiarism detection software, Turnitin.com.We only provide customized 100 percent original papers.

time

24 X 7 Live Help

Feel free to contact our assignment writing services any time via phone, email or live chat.

subject

Services For All Subjects

Our writers can provide you professional writing assistance on any subject at any level.

price

Best Price Guarantee

Our best price guarantee ensures that the features we offer cannot be matched by any of the competitors.

Our Experts

Assignment writing guide
student rating student rating student rating student rating student rating 5/5

440 Order Completed

99% Response Time

Jack Arens

MBA in HRM

London, United Kingdom

Hire Me
Assignment writing guide
student rating student rating student rating student rating student rating 4/5

248 Order Completed

100% Response Time

Lloyd Bernabe

MSc in Accounting

London, United Kingdom

Hire Me
Assignment writing guide
student rating student rating student rating student rating student rating 5/5

647 Order Completed

98% Response Time

Adlina Han

Masters in Marketing with Specialization in Branding

Singapore, Singapore

Hire Me
Assignment writing guide
student rating student rating student rating student rating student rating 5/5

1896 Order Completed

95% Response Time

Herman Berens

MSc in Psychology

London, United Kingdom

Hire Me

FREE Tools

plagiarism

Plagiarism Checker

Get all your documents checked for plagiarism or duplicacy with us.

essay

Essay Typer

Get different kinds of essays typed in minutes with clicks.

edit

GPA Calculator

Calculate your semester grades and cumulative GPa with our GPA Calculator.

referencing

Chemical Equation Balancer

Balance any chemical equation in minutes just by entering the formula.

calculator

Word Counter & Page Calculator

Calculate the number of words and number of pages of all your academic documents.

Refer Just 5 Friends to Earn More than $2000

Check your estimated earning as per your ability

1

1

1

Your Approx Earning

Live Review

Our Mission Client Satisfaction

The work was great I loves how fast the work was done. The prices was great it was not expensive

flag

User Id: 433071 - 24 May 2020

Australia

student rating student rating student rating student rating student rating

The expert didn't address all aspects of the assignment also didn't get my solution on time

flag

User Id: 430334 - 24 May 2020

Australia

student rating student rating student rating student rating student rating

Assignment looks amazing. I hope to score well. Will soon share my grades. I would recommend people like me who are working for livelihood and have studies to complete to take up this site as your best buddy.

flag

User Id: 432467 - 24 May 2020

Australia

student rating student rating student rating student rating student rating

Team My Assignment, you are the best. Assignment was done and submitted and as a result, grade marking was 80. Once again thanks so much

flag

User Id: 392423 - 24 May 2020

Australia

student rating student rating student rating student rating student rating
callback request mobile
Have any Query?