Get $30 referral bonus and Earn 10% COMMISSION on all your friend's order for life! Start Earning
New User? Start here.
Enter phone no. to receive critical updates and urgent messages !
Error goes here
Please upload all relevant files for quick & complete assistance.
1 Geotechnical Engineering 2 Contents Introduction ................................................................................................ ...
1 GeotechnicalEngineering 2 Contents Introduction.................................................................................................................................................................3 BackgroundofStudy...............................................................................................................................................4 SlopeStability.....................................................................................................................................................4 SoilNailing..........................................................................................................................................................5 ProblemStatement..................................................................................................................................................7 Projectobjectives....................................................................................................................................................8 ResearchQuestions.................................................................................................................................................8 SignificanceoftheStudy........................................................................................................................................8 LiteratureReview........................................................................................................................................................9 Introduction...........................................................................................................................................................10 Euro-code7.......................................................................................................................................................12 Conventionalmethod........................................................................................................................................13 BS8006:1995....................................................................................................................................................14 FHWA...............................................................................................................................................................16 Comparison.......................................................................................................................................................17 Summary...............................................................................................................................................................19 Methodology.............................................................................................................................................................24 Introduction...........................................................................................................................................................24 ComponentsofSoilNailWall..............................................................................................................................26 Tendons.............................................................................................................................................................28 PartsoftheConnection.....................................................................................................................................28 Mouldandgrout................................................................................................................................................30 Centralizers........................................................................................................................................................32 MaterialsandComponentsResistanttoCorrosion...........................................................................................32 TheWall'sSurface............................................................................................................................................33 Removalofwastematerials..............................................................................................................................33 Installingandfinishingthenailsandgrout.......................................................................................................34 ResultsandDiscussion..............................................................................................................................................35 References.................................................................................................................................................................45 3 Byrne,R.J.,Cotton,D.,Porterfield,J.,Wolschlag,C.andUeblacker,G.,1996.Manualfordesignandconstruction monitoringofsoilnailwalls......................................................................................................................................45 Lazarte,C.A.,Robinson,H.,Gmez,J.E.,Baxter,A.,Cadden,A.andBerg,R.,2015.Soilnailwallsreference manual(No.FHWA-NHI-14-007)...............................................................................................................................45 Chee-Meng,C.andYean-Chin,T.,2006.Soilnaildesign:AMalaysianperspective.InInternationalConferenceon Slopes(pp.379-400)..................................................................................................................................................45 Lazarte,C.A.,Elias,V.,Sabatini,P.J.andEspinoza,R.D.,2003.GeotechnicalengineeringcircularNo.7-soilnail walls(No.FHWA-IF-03-017).UnitedStates.FederalHighwayAdministration.OfficeofTechnologyApplications. ...................................................................................................................................................................................45 Yuan,J.,Lin,P.,Mei,G.andHu,Y.,2019.Statisticalpredictionofdeformationsofsoilnailwalls.Computersand Geotechnics,115,p.103168......................................................................................................................................45 Su,L.J.,Chan,T.C.,Yin,J.H.,Shiu,Y.K.andChiu,S.L.,2008.Influenceofoverburdenpressureonsoilnailpullout resistanceinacompactedfill.Journalofgeotechnicalandgeoenvironmentalengineering,134(9),pp.1339-1347. ...................................................................................................................................................................................45 Babu,G.S.andSingh,V.P.,2008.Numericalanalysisofperformanceofsoilnailwallsinseismicconditions.ISET JournalofEarthquakeTechnology,45(1-2),pp.31-40..............................................................................................45 Turner,J.P.andJensen,W.G.,2005.Landslidestabilizationusingsoilnailandmechanicallystabilizedearthwalls: casestudy.JournalofGeotechnicalandGeoenvironmentalEngineering,131(2),pp.141-150...............................45 Lee,C.F.,Law,K.T.,Tham,L.G.,Yue,Z.Q.andJunaideen,S.M.,2001.Designofalargesoilboxforstudyingsoil- nailinteractioninloosefill........................................................................................................................................46 Dai,Z.,Zhao,C.,Guo,C.andLin,P.,2021.Systemreliabilityanalysisofsoilnailwallsagainstfacing failures.InternationalJournalofGeomechanics,21(9),p.04021171.......................................................................46 Lin,P.,Liu,J.andYuan,X.X.,2017.Reliabilityanalysisofsoilnailwallsagainstexternalfailuresinlayered ground.JournalofGeotechnicalandGeoenvironmentalEngineering,143(1),p.04016077....................................46 Babu,G.S.andSingh,V.P.,2009.SimulationofsoilnailstructuresusingPLAXIS2D.PlaxisBulletin,25,pp.16-21. ...................................................................................................................................................................................46 Liu,L.,Wu,R.,Congress,S.S.C.,Du,Q.,Cai,G.andLi,Z.,2021.Designoptimizationofthesoilnailwall-retaining pile-anchorcablesupportingsysteminalarge-scaledeepfoundationpit.ActaGeotechnica,pp.1-24.................46 Tokhi,H.,2016.Astudyofnewscrewsoilnail.RMITUniversity,CivilEnvironmentalandChemicalEngineering,, Melbourne.................................................................................................................................................................46 Introduction 4 BackgroundofStudy SlopeStability Athoroughunderstandingofslopesisnecessaryduetothedangerstheyoffertobothstructures andpeopleduetotwodistincttypesofissues: Thisisaproblemifconstructionorexcavationcausessoilstresschangesthatcauseground collapseonpreviouslystableterrain(theso-called"first-timeslide"). Theconstructionorexcavationofanewstructureontopofapreviouslandslide'sshearsurface maycausetheshearsurfacetoshiftagain. Slopestability,likeotherbranchesofsoilmechanics,distinguishesbetweenshort-andlong-term conditions.It'scriticaltoconsidershort-termrequirementswhenaddingmoreweighttothesoil; however,temporaryworksthatreducetheamountofweightonclaysmayalsoberelevant,asthe depressedporepressurescausedbyexcavation,forexample,maynothaveenoughtimetodissipate beforeanotherweightincreaseisapplied.Short-termsituationscallforthel>"=0analysis,whichmakes useoftheundrainedshearstrengthC"asaninputtotheequation.Themobilizedundrainedshear strengthatfailureinfissuredclayswasfoundtobeconsiderablylowerthanthemobilizedundrained shearstrengthestimatedfromsmall-scaletesting,basedonback-analyzedlosses.Themobilized undrainedshearstrengthistypicallyonly45-60%oftheshearstrengthmeasuredonsamplesof40-50 mmdiameterbecausetinypiecesdonotcontainsimilarfissures,aspreviouslymentioned(whichare planesofweakness). Becausetherateatwhichunloading-inducednegativeporepressuresdiminishesisdifficultto track,thereislittledataonhowlongthe=0analysiscanbereliedupon.However,thesoilweakensand expands;asaresult,decreasingtotalstrength.Thepeakeffectivestrengthparametersc'andf>'areused 5 inthelongtermwhenporepressureshavebeenequalized,andthesoilhasnotpreviouslyfailedinany manner.Togetamoreaccurateestimateofslopestability,youmayusetheresidualstrengthparameters (c'and/>')ifthereisapreexistingshearsurfaceonthesite(asaconsequenceofpreviousslope instability).Dependingontheproject'srequirements,thisinformationmaybegleanedthrougheither stressreversalshearboxtestingorringsheartesting.Theremustfirstbeequilibriumporepressures measuredintheslopetocontinuewiththeresearchbasedoneffectivestress.Severalvariablesaffectthis process,includingtheclimate,localgroundwaterconditionsbeforeconstruction,subsurfacegeometry andfeatures,andtheeffectivestressdependencyofsoilpermeability.ruisoftenselectedbasedonprior experiencewithmonitoredandback-analyzedslopesinpracticeintheUnitedKingdom.Thoughshear strengthissupposedtobemobilizedevenlyovertheslipsurfaceinstabilitycalculations,progressive failureisthoughttooccurinreality.Whilestabilityanalysismayprovideagoodindicationofthe stabilityofaslope'ssafetyfactor,it'salsoknownthatstabilityanalysiscanpredictasurfacefailureona differentsurfacethanwhat'sobservedatthefailurelocation. SoilNailing Themethodofsoilnailingisusedtostrengthenthesoilandmakeitmoresolid.Additionally,itis utilizedtoincreasethestabilityofslopes,excavations,retainingwalls,andotherstructures.Soilnailsare oneofthemostcost-effectiveandpracticalmethodsforretainingwallsfromtoptobottom.Their technologicalfeasibility,speed,anddependabilitymakethemexcellentslopeprotectionandearth retentiondevice. Comparedtootherretainingsystems,soilnailstakeuptheleastamountoffloorarea.The activitiesaregenerallylightandquiet,andthereislittledisruptiontotrafficorthelivesofthosewholive inthesurroundingarea.Forcantileverandanchoredretainingwalls,soilnailseliminatetherequirement forafoundationoranystructuralwhalerbeamsatthebottomofthewall,astheydoforsoilnails.Using thesoilnailingtechnique,wemaycutdownontimeittakestocompletethejobandthenumberof 6 materialsused.Theyareveryadaptableandreadilyadjustable,andthepositionofthenailsmaybe changedifanyobstaclesareencountered.Whenitcomestosoilnailing,littleequipmentisutilized. Theycanhandledifferentialsettlementsinmostcases,anddeflectionofsoilnailsiskeptwithin acceptablelimits.Comparedtootherretainingwallsystems,theyaremorecost-effectivesincethey utilizeshotcreteofminimumthicknessratherthanheavystructuralwalls,whicharerequiredinthecase ofotherretainingwallsystems.Themethodofsoilnailwallbuildingissuggestedinsomesituationsand canoffersignificantadvantages,particularlywhennootheralternativeisavailable. excavationshoringforthetimebeing Siteretainingwallsthatarepermanent Stabilizationoftheslope Portalsleadingintotunnels Roadwaywidening Bridgeabutmentsthatarealreadyinplace Portalsleadingintotunnels Existingretainingstructuresarebeingrepairedandreconstructed. Eventhoughasoilbody'sshearingstrengthandtensilestrengthmaybealmostcompletelydisregarded, thereiscertainstructuralintegritythere.Afterplacingsoilnailsofacertainlengthanddensity,thesoil nailandthesoilbodywillcooperate.Itcancompensateforlackofsoilbodystrengthandcreate compositesoil. Thesoilnailisresponsibleforthemajorityofthefunctionsincompositesoil. 1.Theforceofconstraint. 7 Thestiffness,strength,andspatialcombinationformoftheanchorboltinthesoilareallfactorsto consider.Thepurposeofthesoilnailistolimitthedeformationofthesoilbodyandmakecomposite soilbecomeacohesivewhole. 2.Capacityforbearingloads. Thesoilnailandthesoilbodysustaintheexternalloadandgravitationalstressincompositesoil.After thesoilbodyhasreachedaplasticcondition,stressprogressivelytransferstothesoilnail.Becauseofthe highshearingstrengthofthesoilnail,thebearingcapacityofthesoilnailismoreapparent. 3.Stressistransmittedanddiffused. Underthesameloadcondition,thestrainlevelinsoilnailsectionsislowerthanthestrainlevelinthe plainsoilslope,resultinginadelayintheformationanddevelopmentofcrackingzones. 4.Theconstraintforcethatpreventsslopedeformation. Thesteelfabricsprayedconcretepanelissecuredtotheslopewithasoilnail,preventingexcavation unloadingandswellingdeformationwhilesimultaneouslystrengtheningtheconstraintforceonthe boundary. ProblemStatement Becauseofitstechnicalappropriateness,simplicityofinstallation,andlowmaintenance,soilnail isawidelyutilizedslopestabilizationtechnique.Ifappropriateandsystematicdesignprocessesare followed,thisstabilizationtechniquemaybeusedonslopeswithaheightofmorethan25meters.In general,theminimumfactorofsafety(FOS)neededisdeterminedbythelocalauthority'sapprovedrules orcriteria.InMalaysia,thesuggestionsoftheGeotechnicalEngineeringOfficeHongKong(GEOHK) ortheMalaysianPublicWorksDepartmentshallbereferredto(JKR).Becauseournationis progressivelyadoptingEurocodes,someprojectsmayneeddesigncompliancewithEurocodes7and8. 8 (EC7).However,thecreatedEC7isnotdesignedforreinforcedsoildesign.Therearevariationsin partialfactorsusedbyBS8006andEC7(Malaysianannex)fortheslopethathaveavarietyof consequences.Asaresult,theseuncertaintiesmustberecognizedandinvestigatedbeforeasuggestion fortheMalaysiancontextcanbegiven.Asacasestudyforthisproject,numericalmodelingusingSlide2 softwarewillsimulateasoilnailedslope. Projectobjectives Tounderstandthedesignphilosophiesandmethodsforsoilnailedslopedesignbyaconventional method,EC7andBS8006. Toevaluatethesensitivityofnon-fixedpartialfactorstotheanalysesbasedontheconventional designmethod. ToproposeappropriatevaluesofpartialfactorsforsoilnailedslopedesignwithintheMalaysian context. ResearchQuestions HowdifferentarethefinalEC7andBS8006compliantdesignsfromthatoftheconventional method? Howdothepartialfactorsinfluencethesoilnailedslopeanalysisanddesign? WhataretheappropriatedesignparametersintheMalaysiancontext? SignificanceoftheStudy InMalaysia,evaluatingslopestabilityaccordingtoconventionalpracticeisnormalwhenusing limitequilibriumanalysis.Theestimatedvalueofthesafetyfactoraffectstheslope'sstability.The BritishStandard(BS)isnowusedforglobalsafetyfactors,whiletheEuropeanCommunity(EC7) utilizespartialsafetyfactors.TheBritishStandard'sanalysisisbasedonbothglobalandregional 9 standardinformation.Additionally,thisstudywillexplainhowtotalstressandeffectivestressanalysis relatetothenotionofthesafetyfactor.We'llknowthesoil'sporewaterpressureafterthestudyis complete.Totalstressanalysismayberequirediftheporewaterpressurecannotbedeterminedorisnot known.Short-termstabilityissuesarefrequentlyassessedusingtotalstress.Whendealingwiththis scenario,soilundrainedshearstrengthistakenintoaccountfortheoverallstressanalysisandisconstant withdepth.Theeffectivestresscanonlybecalculatedindirectlywhentheporewaterpressuresare known.Itisessentialinthewaterbusinesstopredictwaterpressureforbothshort-termandlong-term circumstances.Thissituationlendsitselftoananalysisbasedondepletedstrengthparameters. LiteratureReview 10 Introduction Itisnotalwayspossibletouseotherretainingsystemslikereinforcedconcretewallsor reinforcedsoilwallsondistressedslopesornew,verysteepcutslopesbecausesoilnailingoffersthe distinctadvantageofstrengtheningtheslopewithoutrequiringextensiveearthworkstoprovide constructionaccessandworkingspace.Soilmassesaredesignedtoperformbetterin-situbyinserting relativelysmall,thin,bonded,andunstressedsteelbarsintothesoil(alsoknownassoilnailing).This kindofinstallationnecessitatestheuseofsimpleinstallationequipmentsuchasdrillingrigs,grouting machines,andcompressors.Toensureadequatedrainage,thesoilnailsshouldbesetwitha5to10 degreeslopetothehorizontal.Installingitdoesn'ttakeupalotofspace.Theoriginalslopeprofilescan bemaintainedsinceextensivetreeremovalmaybeavoided.Thisindicatesthattheslopehasbeen subjectedtojustthetiniestdegreeofdisturbance.Hydroseedingtheslopesurfacehasthebenefitof beingmoreenvironmentallyfriendlythanconcretespraying.Soilnailshavealowconstructioncost,and sincetheyneedlittlemaintenanceandinspectiononcetheyareinstalled,theyalsohavealow maintenancecost.Whenplanningslopestabilizationoperations,theunderlyinggeologicalprofilesand soilpropertiesthatmaybegleanedthroughstudyandtestinginthelabareusuallytakenintoaccount. Thelength,size,andamountofsoilnailsusedontheslopewilllikelybeinfluencedbyeachofthese factors.Asidefromthat,theappropriatestabilityanalysismethodandsafetyfactorshouldbecarefully chosenastheywillaffectthedesignofthesoilnailonaslope.Priortoplanninganysubsurface explorationoperations,itisnecessarytoconductsurfaceresearchasthefirststageintheinquiryprocess. Deskresearchandfieldreconnaissancearetwowaystolookatsurfacefeatures.Themostfrequentkind ofsurfacefeatureassessmentisadeskstudy.Deskstudiesincludethestudyofmapsandplansto determinesurfacegeologicalcharacteristics,drainagepatterns,andmaterialsexistingonthesite,aswell asaerialphotographsandconstructionrecordsofnearbystructures.Thestudyofspecificdevelopment papersishighlysuggested,astheymayincludeinformationonthesite'sresearch,welldigging,piling, foundation,andpreviousinstabilityofslopes.Thetopographyandnaturaldrainageofthesiteshouldbe 11 examinedwhiledoingfieldreconnaissanceinordertodeterminetheprobableunderlyingstructureofthe site.It'spossibletoobserveevidenceofpreviousslopefailures,aswellassignsofpain.Constructionof manytrialpits,drill-and-boreholes,andotherinquiryholesorpitsisrequiredtogathersoilandrock coresamplesforexamination.Certainon-sitetestsarerequiredtodeterminethedepthofthe groundwatertableandthedensity,shearstrength,andpermeabilityofthesoil.Someexamplesofthese testsareStandardPenetrationTests(SPTs),VaneShearTests,GCOProbeTests,andPressuredWater Tests.Whenthereisasuspicionofmovement,itmaybenecessarytoinstallequipmentforlong-term monitoringofthegroundwatertable,porewaterpressure,ordisplacement.Examplesofthiskindof instrumentincludethestandpipe,peizometer,inclinometer,andtensiometer.Inlaboratorysoiltesting, soilsamplesshouldbecollectedthatareasrepresentativeaspossibleofthematerialsfoundonthework siteinordertobeutilizedinthefield.It'spossibletocarryoutclassificationtestingandshearstrength testinginalabenvironment.Toevaluatethemoisturecontent,voidratio,liquidandplasticlimit,and permeabilityofasoil,classificationtestsarecarriedoutonthesoilsample.Predictionsregardingthe physicalbehaviorofthesoillayersarethenmadebasedontheresultsandconfirmed.Shearstrength testsshouldbecarriedoutinatriaxialcompressionmachineoradirectshearboxundercircumstances thatarecomparabletothosethatthesoilwouldexperienceinthefieldofapplication.Laboratorystudies arerequiredtodeterminethesoil'scohesiveness,frictionalangle,compression,andrecompression indices.Theelementofsafetyisevaluatedbasedonthesite'slocationandtheimplicationsofacollapsed slopetohumanlifeandproperty.For"threattolife"and"economicrisk,"theGeoguidepublishedbythe GeotechnicalEngineeringOfficescategorizesslopesintothreecategories:"negligent,""low,"and "high."Takingintoconsiderationtheworstpossiblegroundwaterconditionsandrainstormsduringan estimated10-yearperiod,thebareminimumsafetyfactoris1,accordingtothechartbelow.Reducethe dangerbyusingalowerfactorofsafetyonslopesnearunderdevelopedterritory.Thisnon-circular failurepatternisthemostcommoninMalaysia.It'sinfluencedbytheamountofweatheringand infiltrationontheslopesthemselves.Thereareseveralnoncircularanalyticalmethodsthatmaybeused 12 ontheseslopes,suchasJanbuandMorgenstern'sorPrice.Thehydro-geologicalpropertiesoftheslope maybedeterminedviaandsubsurfaceinvestigations.Thedesignsoilparametersmaybederivedthrough in-situfieldtestingandlaboratorysoiltesting.Peizometricdatamayalsobeusedtoestimatealocation's groundwatertabledepth.Tobeclear,poresuction'sinfluenceshouldnotbeconstruedasimproving slopestabilitysinceinfiltrationwouldcausesignificantharmtoaslopeifthiseffectweretakeninto consideration.Internationalstandardsofpracticeanddesignguidelinesareavailableforsoilnaildesign, includingthoselistedbelow. Euro-code7 Partialsafetyfactorsmusttakeintoaccountanyadversedeviationsfromthecharacteristicvalue ofthepropertyaswellasanyuncertaintiesinthemodelusedforcalculation,asspecifiedbyEn1990. Basedonthreeconsequencecategories,theramificationsoftheultimatelimitstatesarealsotakeninto account.Toaccountfortherepercussionsoffailure,addasecondcomponenttothevariablesforactions dependingontheoutcomesofthoseactivities.Theoretically,therearetwowaystofigureoutthe differentpartsofsafety.Traditionalapproaches,forexample,usepriorexperiencetocalibratethe variables.Statisticalmethodsandprobabilistictechniquesmayalsocalibratethevariablesagainsta desireddependabilityindexvalue.Itisrecommendedthata50-yearreliabilityindexbe3.8forthe reliabilityclassRC2,whichcorrespondstothemostcommondesignsituations.Inthisscenario,the theoreticalprobabilityofreachingtheultimatelimitstateisabout1/15000.Theauthorsthinkthat materialandresistancefactorsforgeotechnicaldesignhavebeenacquiredmostlyviacalibrationto earliercodes,evenifcertainpartialfactorsforactionshavebeencomputedusingprobabilisticmethods. Itmeansthatwhileestablishingsafetymeasures,bothmaterialqualities(suchasstrength)andactivities shouldbetakenintoaccount(Byrne.,etal,1996).Foraneffectivestressanalysis,partialsoilstrength factorsof1.25arerecommended,whileatotalsoilstrengthfactorof1.4isrecommended.Toconductan 13 effectivestressanalysis,partialfactorsonsoilstrengthshouldhavec'=1.25,whereasfullfactorsshould havec'=1.25.Thetotalsafetyfactortechniquehastraditionallybeenusedtoassessslopestabilitywhile doingstabilityanalyses.Manyengineersthinkthatconnectingtoasinglesafetyfactoriseasysincethere isalotofdataonoverallsafetyfactorsbasedonexperience.Increasedsettlementsarecausedbyan increaseinhorizontalsoilmovements. Thisreductioninoverallsafetyleadstoanincreaseinsettlements(1990).Acomprehensive safetyplanformaintainingslopestabilitymaybeimprovedwiththeuseofempiricalevidence.The inclusionofpartialsafetycomponentsintheEurocodesimpliesthatsafetyisplacedwhereuncertainty existswhilealsoconsideringtheconsequencesoffailure.Accordingtothestudy'sobjectives,wewantto findouthowtruethisassumptionisintermsofslopestabilityandwhatmaybedonetoimproveitinthe future.ThismaybedonebyapplyingpartialresistanceMfactorstotheequation.Consequently,the alternativemethod'smaterial,partialfactors,willbecalculatedforvarioustargetreliabilityindexvalues correspondingtovariousreliabilityclasses. Conventionalmethod Whencreatingstableslopes,severalimportantfactorsneedtobetakenintomind.Soil characteristicsandgeologiccontextsdeterminevirtuallyallslopedesignissues.Inotherwords,notwo slopedesignissuesarethesame.Asecondreasonisthatstabilityestimationtechniquesforexcavation slopesandslopesofembankmentsareidentical.Thustheymaybeutilizedinterchangeably.Tobeclear, thefirsttwocriteriaapplytobothnewlyconstructedandexistingslopesandcorrectivesolutiondesign forbothtypes.Third,buildingastablesloperequiresfieldresearch,laboratorytesting,stability evaluations,andappropriateslopeconstruction.Thebestavailabledatacollectingandanalysismethods mustbecoupledwithsoundengineeringjudgment,experience,andintuitionifasafeandcost-effective slopestabilizationsystemisachieved.Becausethevastmajorityofthework'sspecificscannotbe 14 standardized,excellentengineeringjudgment,experience,andintuitionmustbeusedwiththefinestdata gatheringandanalysismethodsavailable. Thestabilityofaslopehastraditionallybeenconsideredasafetyfactor,butinterestin developingaprobabilisticassessmentofslopereliabilityhasgrownrecently,especiallyinthe constructionsector.Traditiondictatesthatifasafetyfactorislessthanone,itindicatesfailure,oratleast thepotentialoffailure,whereasagreatersafetyfactorindicatesstability.Whencalculatingaslope's safetyfactor,therearemanythingstokeepinmind.Thereareseveralfactorstotakeintoaccountwhen evaluatingdata,suchasthequalityofthesubsurfaceinvestigations,laboratoryandfieldtesting,data interpretation,thequalityofconstructioncontrol,thecompletenessofthedesignprobleminformation(if any),andhowwellthedesignproblemhasbeenaddressed.Inaddition,theengineermustthinkabout theramificationsofafailingsystem.Slopedesignswithsafetyfactorsrangingfrom1.25to1.50are requiredinthemajorityoftransitsituations.Whereaslopemovementcancausehumandeathor significanteconomicloss,orsignificantuncertaintyregardingrelevantdesignparameters,construction qualitycontrol,seismicactivitypotential,etc.,higherfactorvaluesmayberequiredtoprotectagainst suchrisks.Ifanengineerisconfidentintheintegrityoftheinputdataandcanrelyongoodconstruction controlthroughoutthebuildingprocess,lowersafetyfactorsmaybeused. BS8006:1995 BS8006testsincludethestabilityofthefacetopreventerosionandthetransferofloadinthe activezone,bothofwhicharenecessaryforsafeoperation.Tobeclear,whileitincludessuggestionson soilnaildesigninBS8006,itlacksthethoroughnessanduser-friendlinessofthedesigntechniquesgiven inHA68/94andtheFHWAmanual. 15 TheBS8006designapproachmakesuseofthelimitstatenotiononceagain(British Standard).Thelimitequilibriumtechniqueisusedtoevaluatethestabilityofthestructureby testingitsinternalandexternalstabilitiesagainstthelimitstates.HA68includespartialsafety concernsintoitsdesigncalculationtocomplywiththerequirements.Amorecomprehensive explanationofthedifferenttechniquesandassumptionsavailabletothedesignerisprovidedin BS8006insteadofHA68.Eachofthesecomponentfactorsisconnectedtoacertainbuilding conditionorscenario,anditisalsogiven.Inadditiontothelogspiralapproachandthetwo-part wedgetechniquethereareothermethodstousewhentryingtolocatethecriticalfailurepoint.The BritishStandard8006advisesthatiftheshearresistanceissignificant,usersincludeitintotheir designwiththewell-knowntensilereinforcementprovidedbythenails.BS8006definesthe stagesthatadesignershouldconsiderwhenconstructingsoilnailingstructuresintheUnited Kingdom(UK).Thisishowthephasesgo: Tokeeptheactivezonestable,youmustfirstdeterminewherethecriticalslipsurfaceis locatedandhowmuchresistiveforceormomentisneeded. Thereshouldbeacheckateverystage,consideringthevariousstagesofdevelopment,to guaranteethatnothinggoeswrongthroughoutthebuildingprocess. forexample,howmuchstrainisinthenailjustbelowtheslipsurface Removethewholeresistivezonenaillength-wise Bendingandshearingmaybeseenwherethenailmeetstheslipsurface. Assoonasthenailishammeredintotheearth,itcollapses. Animprovednailpatternanddispositionmaybeselectedafterfurtheranalysisbythe designer,whomaythenputitintopractice(Chee-MengandYean-Chin,2006).Anewmethodfor figuringouttheshearloadsinnailswascreatedusingthetheoryofnaildeflectionsand 16 kinematicalcompatibility,bothofwhichwerebasedonlaterallyloadedthinpiles.Thisstandard givesdesignersgreaterleewaywhenselectingtheoptimaldesignstrategyforvarioussituations thandoesHACCP(HazardAnalysisandCriticalControlPoint)(HACP).Thedesigner'sprior experienceandknowledgemustbeconsideredwhenselectingappropriatetechniquesfora suitabledesignbasedonguidancefromthedesignhandbook. FHWA Whenitcomestosoilnailing,theFederalHighwayAdministration(FHWA)utilizesthe limitedequilibriumapproach.Themanualusestheslipsurfacelimitingequilibriumapproachfor soilnailing,particularlyusedbyallcurrentpracticalsoilnailingdesignmethods.Forthesecond timeinthissetofdesignprinciples,thestrengthlimitstate(sometimesreferredtoastheultimate limitstate)andtheservicelimitstateareconsidered.Theseverelimitstate,asubsetofthe strengthlimitstate,identifiesbuildingsthathavebeenexposedtosignificantstressessuchas earthquakesasanotherlimitcondition.IntroducingtheSLDandLRFDtechniquesofdesign,both ofwhichtakeintoconsiderationbothlimitstatesintheircalculations:theSLDandtheLRFD,the handbookintroducestheServiceLoadDesignAsloadsareapplied,recommendedfactorsof safetyareappliedtothesoilstrengthandallowednailloadsareproposedforreinforcingstrength (tendonstrengthandpulloutresistanceofthenail).Theserecommendationsaremadeatbothlimit states.Remembertoaccountforeverytypeoffailuremodewhencalculatingyoursystem's maximumstrength. Thenailreinforcesthesethreeeffects.Foranailtocontributetostructuralstability,itmust haveoneofthreeproperties:alowtensilestrength,highpulloutresistancealongitsentirelength aboveandbeyondaslipsurface,andlowpulloutresistancecombinedwithhighnailheadstrength betweentheheadandaslipsurface.Thisinformationiscarriedoverfromthepreviousparagraphs. 17 Asopposedtodiscretecomponents,thedesignofsoilnailsandwallfacingsisapproachedas asingleintegratedsoil-nail-wall"system."Bydoingthis,wewanttoensurethatthedesignwill holdupovertime.Thisguideonlylooksatthetensilestrengthandignoresthenail'sshearand bendingcontributions.Duetotheirmobilizationoccurringonlyaftersignificantstructural distortion,theothercontributionsaren'tconsidered.Thisassumptionisconservative,accordingto themanual. Designcalculationscanonlybecompletedafterthedesignerhaschosenthewalllayoutand dimensions,aswellasgroundandsubsurfacematerialproperties,todetermineapreliminarynail pattern,whichincludesthelengths,spacing,strengths,andinclinationsofthenailsaswellasthe groundandsubsurfacematerialproperties(Chee-MengandYean-Chin,2006).Thisisalldonewhile consideringthesurroundingenvironment.Nailshammeredintopredrilledholesshouldbeangledata 15-degreeangle,tobeginwith.Groutingwouldbeparticularlydifficultonslopessmallerthan5 degrees;therefore,theseshouldbeavoided.Thenailspacings,lengths,andsizesmustbeallconsistent. Comparison Thelimitedequilibriumanalysisisusedbyallapproaches,andpartialsafetyfactorsareevidentinsome ofthem.Anyissuesregardingtheassumptionofsimultaneousmobilizationofresistancesmustbe addressedwhendoingtheregionalequilibriumanalysis.Additionalempiricaldata(suchasnailspulled outinanailpullouttest)wouldbeusefulforreferenceinthesemanuals(forexample).Forexample,soil nailingmanualsstatethatthemostcommonfailuremechanismsincludetensilefailures,pullouts, bendingandshearingfailures,bearingfailures,instabilityduringexcavation,andoverallslippingofthe reinforcedsoilmass.Thesefailuremechanismsareallfoundinsoilnailingmanuals.Ontheotherhand, theFederalHighwayAdministrationonlylooksatthetensilestrengthandignoresthenail'sshearand bendingcontributions.Accordingtothemanual,thisassumptioniscautioussincetheremaining contributionsarenotuseduntilasignificantamountofdeformationhasoccurred.FollowingClouterre's 18 recommendations,thelimitequilibriummethodshouldbeevaluatedaftertheconstructionprocessandat eachstage.TheFederalHighwayAdministrationacknowledgesbuildingsexposedtohighpressures, suchasseismicloading,andincludesanextremelimitstateasasubsetofthestrengthlimitstate.The FHWAmanualaddressesanadditionaleffectnotcoveredinotherdesignguides:thenailhead attachmenttotheface.Inconjunctionwiththelimitedequilibriumanalysis,furtherinvestigationinto estimatingthenumberofdisplacementsontheproposedsoilnailingstructure. Slopestability,likeotherbranchesofsoilmechanics,distinguishesbetweenshort-andlong-term conditions.It'scriticaltoconsidershort-termrequirementswhenaddingmoreweighttothesoil; however,temporaryworksthatreducetheamountofweightonclaysmayalsoberelevant,asthe depressedporepressurescausedbyexcavation,forexample,maynothaveenoughtimetodissipate beforeanotherweightincreaseisapplied.Short-termsituationscallforthel>"=0analysis,whichmakes useoftheundrainedshearstrengthC"asaninputtotheequation.Themobilizedundrainedshear strengthatfailureinfissuredclayswasfoundtobeconsiderablylowerthanthemobilizedundrained shearstrengthestimatedfromsmall-scaletesting,basedonback-analyzedlosses.Themobilized undrainedshearstrengthistypicallyonly45-60%oftheshearstrengthmeasuredonsamplesof40-50 mmdiameterbecausetinypiecesdonotcontainsimilarfissures,aspreviouslymentioned(whichare planesofweakness). Becausetherateatwhichunloading-inducednegativeporepressuresdiminishesisdifficultto track,thereislittledataonhowlongthe=0analysiscanbereliedupon.However,thesoilweakensand expands;asaresult,decreasingtotalstrength.Thepeakeffectivestrengthparametersc'andf>'areused inthelongtermwhenporepressureshavebeenequalized,andthesoilhasnotpreviouslyfailedinany manner.Togetamoreaccurateestimateofslopestability,youmayusetheresidualstrengthparameters (c'and/>')ifthereisapreexistingshearsurfaceonthesite(asaconsequenceofpreviousslope instability).Dependingontheproject'srequirements,thisinformationmaybegleanedthrougheither 19 stressreversalshearboxtestingorringsheartesting.Theremustfirstbeequilibriumporepressures measuredintheslopetocontinuewiththeresearchbasedoneffectivestress.Severalvariablesaffectthis process,includingtheclimate,localgroundwaterconditionsbeforeconstruction,subsurfacegeometry andfeatures,andtheeffectivestressdependencyofsoilpermeability.ruisoftenselectedbasedonprior experiencewithmonitoredandback-analyzedslopesinpracticeintheUnitedKingdom.Thoughshear strengthissupposedtobemobilizedevenlyovertheslipsurfaceinstabilitycalculations,progressive failureisthoughttooccurinreality.Whilestabilityanalysismayprovideagoodindicationofthe stabilityofaslope'ssafetyfactor,it'salsoknownthatstabilityanalysiscanpredictasurfacefailureona differentsurfacethanwhat'sobservedatthefailurelocation. Summary Thishandbook'smethods,whicharethoroughandrigorousbutalsoeasilyadaptabletoMalaysian practice,serveasabasisforthemostrecommendeddesignprocedures.TheymustsatisfyBS8006 requirements,andcertaingoodpracticesfromHA68/94areincludedtomakethedesignmethodsmore applicabletoMalaysianpractice(Lazarte.,etal,2003).Thedesignprocesswasbrokendownintothe followingstages: DesigningCriticallyIntheprocedure,thefirsttwostagesarecalledcross-sectionsandtrialdesigns, respectively.Choosingatrialdesignsuitableforthedesigngeometryandloadingconditionsbeing evaluatedispartofthisstep.Calculationoffinalsoilstrengthparametersanddesignwatertable locationforvarioussubsurfacelayersisalsorequired(belowthewallbase). 20 21 Note:InMalaysia,ultimatebondstressisgenerallycalculatedusingcorrelationswithSPT"N"values andvariesfrom3to5N. RecommendedValueforDesignFacingPressureFactors 22 Theallowablenailheadloadisthenthelowestcalculatedvalueforthetwodifferentfailuremodes. 23 Bearingplateconnection Allowablenailloadsupportdiagram 24 Methodology Introduction Thischapterdiscussesthematerialsandbuildingtechniquesusedtobuildsoilnail walls.Wheninstallingsoilnails,twobasicmethodsdependonthereinforcingbarbeingused: Directandindirectinstallationarealsooptions.Atwo-stepmethodisusedtodrillandgrout solidbarsoilnailswith4to8inchesdiameterandattachsoiltoafoundationusingsolidbar soilnails.Ashallowangleofattackiscreatedbyinitiallydrillingholesatashallowangle (usually15degreesfromhorizontal)usingcasedoropen-holemethods(Yuan.,etal,2019). Thesecondstageisinsertingthetendonsandgroutingthemintotheholesinthetendonsthat havebeendrilled.It'shardtoseeaconstructionsitewithoutseeingapileofsolidbardirt nails.Theirtendonlengths,threadtypes,andsteelgradesareallwidelyaccessible,asare severalcorrosionprotectionschemestosuitabroadrangeofapplicationsandsite circumstances.Theyaredrilledandgroutedintothegroundsimultaneouslyusinghollowbar soilnails(HBSNs).Tousethesesoilnails,holesmustbemadeintheground,andgroutmust beusedtofastenthetendonstothesoil.Groutisputintotheholewhileit'sbeingdrilledto keepitfromdryingout.Itwashesdirtoutoftheholeandfillstheannularareabetweenthe tendonandthedrillbitwhenthegroutisinjectedfromportsinasacrificialdrillbit.Drilling techniques,includingrotaryandrotarypercussiondrilling,areoccasionallyemployedin conjunctionwithHBSNs.HBCUsmaybeplacedconsiderablymorerapidlythansolidbar soilnailsinmostsituationsifthesubsurfaceconditionsarefavorable.Thesebarsare especiallyusefulinsoilswhereopendrillholeswouldotherwisecollapseandneedtheuseof temporarycasingtopreserveholestabilityuntilgroutcanbeinjected.HBCUsofferlimited optionsforcorrosionprotection,andqualityassurancestandardsandtestingproceduresare stillbeingdeveloped.TheLimitEquilibriumMethod(LEM)willbeutilizedtoevaluatesoil androckslopestabilityanddamstability,embankmentstability,andretainingwallstability 25 aspartofthisresearch,whichwilluseSlide2v6.0,acommercial2Dslopestabilityprogram developedbyRocscience.Arepresentativecross-sectionofanidealizedslopemustbe createdtoderivemeaningfulconclusionsfromthetwo-dimensionalstudy.Aslopestability analysisforgeotechnicaldesignmustfindtheslipsurfacewiththelowestfeasiblesafety factorifitistobesuccessful.Inthecaseofcircularslipsurfaces,theslipsurfacewiththe lowestFoSmaybedeterminedbyrepeatingtrialsonalargenumberofcircularslipsurfaces. Tolocatetheslipsurfacewiththelowestestimatedfactorofsafety,createagridpatternof centersforafamilyofcircularslipsurfaces.Thenutilizethisgridpatterntoidentifytheslip surface.Automatingthesearchfornoncircularslipismuchmorechallengingwhentheslipis notcircular.Manycomputerapplicationsasktheusertolookforaslicksurfaceby examiningavarietyofsuitabletestslicksurfaces.Itisessentialtousesomediscretionwhen choosingwhichsmearstoexamine.Follow-updiscussionsapplytoproblemsthatarise beforeandaftersoilnailingisused.Theprocessoffindingtheslipsurfacewiththelowest feasiblesafetyfactorisknownasoptimizationfromamathematicalviewpoint.Thismethod necessitatestheformulationofanobjectivefunction(e.g.,safetyfactor)thatincludesa numberofspecifiedvariables(e.g.,slideposition)andanumberofrestrictions.Changingthe variablesputupforthisreasonmayresultinthegoalfunctionhavingitsmaximum(or minimum)value.Theoptimizationprocessmaybeaidedbyabroadrangeofmathematical techniques.Geotechnicalengineeringapplicationshavemadeuseofsomeofthesetechniques, whileothersarestillbeingdeveloped. Inthisresearch,a1:1slope(a45-degreeinclination)willbeinvestigatedwhetheritis naturallyoccurringorartificiallycreated.Inaddition,theslope'sheightandwidthwillbe both10meters,andthesoilwillbemadeupoftwotypesofclay:asiltyclaylayerontopofa claylayerundertheslope'ssurface.SoilshearstrengthwillbecalculatedbyusingtheMohr- Coulombfailurecriterionasfollows: 26 IfTrepresentsshearstrength,nrepresentseffectivestress,andTstandsfortotalstress.The pore-waterpressure,cohesiveness,andfrictionanglearealsodesignatedbytheletterT. Real-worldcircumstancesmayneedtheuseofdrainage,triaxial,ordirectsheartestingto determinethesoil'sstrengthproperties.Itisexpectedthattheanalysiswilltakealongtime; therefore,effectivestresseswillbeused.Becauseofthis,intheshort-termanalysis,the undrainedshearstrengthofthegroundisused(c=cuand0)todeterminehowmuchenergy willbereleasedintheeventofanearthquake. ComponentsofSoilNailWall Soilnailsincludethreadedtendonattachmentstopreventthemfromsnapping.Threads maybeslicedintwoways:intoaspirally-deformedribbing(alsoknownascontinuous threadbars)orintoarawreinforcingbar.Thecutfaceofthebarmustbethreadeda minimumof6in.toallowforproperconnectionofthebearingplateandnut.When creatinganon-threadedbar,keepinmindthatcuttingthreadsreducestheamountofsteelin thethreadedsection.Themajorityofthetime,tendonnonessentialtensilestrengthis60ksi (grade60)or75ksi(grade75)(Grade75).ASTMA615specifiesthatsteeltendonsof grade60or75mustsatisfythecriteria.Certainapplicationsmaybenefitfromusingsoil nailswithtendontensilestrengthsof95ksi(Grade95)and150ksi(Grade150).Ground anchors(Sabatinietal.1999)utilizehigh-gradesteelmoreoftenbecausetheirdesignloads aretypicallymuchgreaterthansoilnails(Su.,etal,2008). Consequently,forconventionalsoilnailinstallations,high-gradesteelmaynotbethemost cost-effectivechoice.Soilnailingmaybepossiblewith95ksi(Grade95)steelbarsiftheir 27 flexibilityiscomparabletolower-gradesteel.ASTMA722specifieshowgrade150steel barsshouldbeproducediftheyaretobeused.AppendixA,TableAdisplaysthesection characteristicsofsolidbartendons.Itisnotuncommontocomeacrosssolidbardirtnails withthesizedesignationsNo.8,9,10,and11.Smallerdiameterbarsareusedbycertain soilnailproducers(uptothenumbers6and7);however,thisisdiscouragedsincesmall diameterbarstendtobendexcessivelyduringhandlingandinstallation,resultinginthe nailsbeingspacedtootightlymakingthesystemlesseffective.Geotechnicalpulloutand thestrengthofthecladdinglimitthemaximumtensileloadofbarswithnominaldiameters of14andabove,makingtheminefficient.Tobesure,theselimitationsonbarsizedon't alwaysapplyeverywhere.Themaximumproductionlengthforthreadedbarsinthesixto fourteen-inchrangeis60feet.Mosttendonstructuresdonothavesplicesorwelds. Couplersmaybeusedtoextendthelengthofbars.Thenominaltensileresistanceofthe barsmustbedevelopedinlinewiththecertificationofthemanufacturer.Solidbarswith threadedendsareseeninFigure3.2. 28 Tendons Threadedsolidbars. Asaresultofthiswiderangeofyieldtensilestrengths,hollowsoilnailingbarsmaybeused inmanysoilnailingapplications(410MPaand620MPainSIUnits).Withanouterdiameter rangingfrom30mmto3inches,hollowbarshavewallthicknessesthatrangefrom0.3to1 inch.Theyarealsoknownasroundbars(7to25mm).Usinglongertendonpieces,custom lengthsmaybecreatedbycuttingandlinkingthemtogether.Tendonsmaybepurchasedin lengthsrangingfrom10to20feet.Sectioncharacteristicsofhollowbartendonscommonly availableonthemarketareshowninTablesA.2throughA.4(AppendixA). PartsoftheConnection Steelcomponentssuchasbearingplates,beveledwashers,hexagonalnuts,washers,and headedstudsareamongthenumerouskindsusedtoconnectdirtnailstothefacing.Fornail- to-first-faceconnection,usethebearingplate,hexnuts,andwashers;fornail-to-last-facing connection,useheadedstuds(BabuandSingh,2008).Abearingplateiscombinedwiththe nailendtotransmittheforceappliedonthefirstshotcretefaceandthesoilbehindthefacing. Certaindirtnailbarmanufacturersprovideforgedbearingplateswithaconcavedrillhole, enablingtheconnectiontobeflexibleineitherdirection.Forthemostpart,contractors 29 positionedthebearingplateagainstthefirstface'sfresh,still-wetshotcrete.Thebearingplate mustbeproperlypositionedinthegroutnottogettoodeeplyembedded. Bearingplatesandnutsareuniformlydistributedbyinsertingbeveledwasherswithanangle thatmatchestheslopeofthenailbetweenthem.Sphericalseatnutsareoftenusedinsteadof hexagonalseatnutstomakealigningthecorrespondingpartseasier.Boltnutsaresnuggedup usingahand-wrench.Oncetheshotcretehasbeenset,usecaretoavoidovertighteningthe nuts.ThereareAASHTOM291/ASTMA563GradeBrequirementsforwashersandnutsin theassembly.Toconnectthebearingplatetothefinalface,four-headedstudsareoften utilized.Finally,thebearingplateisinstalledandtightenedusingthestudsthatwerewelded toit.TheAmericanNationalStandardsInstitute/AmericanWeldingSociety2000mustbe followedwhiledoingstructuralwelding.Thereshouldbeenoughspacebetweenstudsand theouterbordersoftheplatesothattheyarenotweldedanyclosertotheplate.Whilethe diameterofthestudshaftinfluencesthisdistance,it'stypicallybetween1and1.5inches. 30 Mouldandgrout Groutusedinsoilnailingapplicationsinneatcementmixeshasawater/cementratioof0.4- 0.5%,withaspecificgravityof1.8-1.9inneatcementmixes.Duringthegroutpreparation process,specificgravitymeasurementsofneatcementgroutmixesareperformed,andthe findingsareinstantlyaccessible.Ifthecomponentsandmixdesignconsistentlygenerate groutwiththeminimumnecessarystrength,theymaybeusedasaprimaryqualitycontrol measureforneatcementgroutmixtures.Beforeproduction,pre-productioncompression testingongroutcubesproducedfromamixwithaspecificgravitymayaddressthisproblem. Whenitcomestimetoverifythecompressivestrengthofthegrout,unmoldedanduntested cementgroutcubesmaybeformedandtested.Dependingontheproject'sspecificconditions, astrongergroutmaybeneededtolimitgroutleakageintohighlyporousgranularsoilsor badlyfracturedrock.Inthesecases,alessflowablesand/cementgroutmaybeused.Usinga groutthatistoohard,ontheotherhand,canmaketendoninsertiondifficultorimpossible usingconventionalgroutingequipment(TurnerandJensen,2005).Ifathickergroutis neededtocontrolgrouttake-infromthesoil,pre-treatingthegroundbeforeplacingsoilnails maybenecessary.Forexample,asand/cementgroutmix'squalitycannotbecontrolledusing specificgravitymeasurements.Certaingranularsoilswithanopenmatrixandminimal cohesionmaycausedrillholestocollapseandgrouttoleak(forexample,poorlygraded gravel).Thisholdsevenifyou'reworkingwithahardgrout. Toavoidthedrillholecollapsingandtorestrictgroutflowintothehighlyporousearth,it maybenecessarytouseagrout"sock."Thesteelbarandtremiepipearecoveredina geotextilebeforethewholeassemblyisplacedintotheholethathasbeenexcavatedtomake guttersocks.Additivesaren'trequiredinthevastmajorityofcases.Admixturesinthegrout mayreducebleedingandenhanceflowabilitywhilealsodecreasingthewatercontentand delayingthesettingtime.MaterialsmustmeettheAASHTOM194/ASTMC494 31 requirements,becompatiblewiththegrout,andbemixedaccordingtothemanufacturer's specifications.Acceleratorsaren'tpermittedveryoften.Calciumchloride-containing acceleratorsingroutshouldbeavoidedsincetheyincreasethecorrosionpotentialaroundthe tendon. Plasticizersmayhelpyougetthejobdonequickerandmoreeffectivelyifyou'reworkingina hotclimateorifthegrouthastobepumpedoverlongdistances.Plasticizersusedinthegrout mayfrequentlykeepitworkableforuptoanhourafterapplication.Aswellasmakingthe grouteasiertoworkwithandlesspronetocracking,air-entrainmentagentsalsoallowthe grouttoopenup,decreasingtheamountofchemicalandphysicalcorrosionprotection providedbythecement.Thismeansthatonlycircumstanceswherenoothercorrosion preventionmeasuresareavailable(suchasgroutcover)orwherethegroutcoverthickness exceedstheminimumvaluesshouldemployairentrainmentagents.Specialgroutscontain chemicalsthatlimittheshrinkagetominimizecrackingandenhancethebondingstrength betweentwosurfaces.Toensurethatthegroutandbondingpropertiesarenotharmed,testing shouldbedoneonanyadmixturesconsideredforuse.Assoonasthetendonhasbeenplaced inthedrillhole,cementshouldbepouredintoittohelppreventitfromcompressingor collapsing.Tremiemethodsareusedintheseapplicationstoinjectthegroutviaanembedded groutpipe,whichfillswithgroutasitisinjected,ensuringthatallgroutisinjectedbeforethe holecloses.Aregionabovethedrillholeopeningcanneverbefilledwithfreshgroutdueto itsfluidnatureandinclinationinrespecttothedrillholeopening.Whenatemporarycoveris placedinfrontofthedrillhole,itcreatesa"bird'sbeak"shapethatmaybefilledwith additionalgroutorshotcrete,whichispackedinbyhandorappliedduringtheshotcrete facinginstallation.Thisareamustbefilledafterbeingsubjectedtowaterpenetrationand subsequentcorrosiontoprovidefullcoverageandmoistureprotection.Hardplastictubingin the0.75tothe1.0-inchrangeisoftenusedforgroutpipeconstruction.It'sanormal 32 proceduretotakethegrouttubeoutoncethegrouthasbeenapplied.Ontheotherside,some builderschoosetokeepthegrouttubeinplacesinceitdoesn'tsignificantlyaffectthejob.To avoidleaks,thegrouttubeshouldbesealedatthedistalendifitisimpossibletoremoveit. Soilnailswillperformandlastlongeriftubesarefilledbeforeinstallation.Iftubesarenot filled,thismustbetakenintoaccountbeforesoilnailsareplaced. Centralizers TendonrupturesmaybepreventedusingPVCSchedule20orSchedule40centralizersand othersyntheticmaterialsthatarenotdamagingtothetendon.HBSNsareusedin combinationwithsteelcentralizers(Lee.,etal,2021).Toensurethatthetendoniscompletely coveredwithaminimumgroutthickness,centralizersmustbeplacedatvariousplacesalong thelengthofeachsolidbarorHBSN.Theyarepositionedasindicatedinthepictureat regularintervalsthroughoutthenail'slength,notmorethan10feetapartandapproximately 1.5feetawayfromeitherendofthenail.Tobesuccessful,centralizersmustbeconnected firmlytothetendonsandlargeenoughtoallowforthefollowing:Assemblingatremiepipe, enablinggrouttoflowfreely,andplacingthetendononeinchfromthedrillhole'scenterare allstepsinthedrillingprocess. MaterialsandComponentsResistanttoCorrosion Additionalcorrosionprotectiondevicesareusedtothetendonsinadditiontothecement grout,whichshieldsthemfrombothphysicalandchemicalharm.Thefinalstepistogrout theannulusbetweenthesheathandholeafterplacingtheencasedbarintheholeusingthe tremiemethodspreviouslydescribedindetail.Epoxycoatingsfusion-bondedtosolidbarsare anoption.Dielectricepoxycoatingavoidscorrosionbyblockingelectriccurrentsthatmight otherwiseflowthroughit.Whenusingfusion-bondedepoxycoating,besuretoadheretothe ASTMA775standard.Epoxycoatingforbarscomesinawiderangeoftypesand thicknesses.Green,gray,andpurplearethepossiblehuesforthecoatings.Withitsabilityto 33 bendandconformtovariousshapes,thegreenepoxycoatingisexcellentforsteelreinforcing bars.Epoxycoatingsingrayandpurplearelessflexiblethaningreenones,butgreenepoxy coatingsaremorechemicallyresistant.Formarineorharshcircumstances,purpleepoxy paintisbetterthanclearepoxycoating.Youmaygalvanizebothsolidandhollowtendonsas wellastheirhardwareusinghot-dipgalvanizing. TheWall'sSurface Tendonconnectionsareconstructedontheexcavationfaceorslopesurfacetoconnecttoa facingsystem.Dependingontheapplication,facingsareoftenmadeupoftwolayers:initial shotcretefacingandshotcreteorCIPconcretefinalfacing.Whileexcavatingandnailing,the initialfacing'sfunctionistosupporttheexposedsoil,createaninitialconnectionbetween them,andofferprotectionagainsterosionandsloughingattheexcavationfacethroughout thoseprocesses.Despiteperformingthesamefunctionsasthefirstfacing,thefinalface benefitsfrommeetingtheproject'saestheticrequirements.Otherimportantaspectsmustbe consideredinthefinalfacedesignandlong-termcorrosionandclimatechanges. Removalofwastematerials Toreducetheamountofwaterpressurebehindthewallfacing,verticalgeocompositestrip drains(referredtoasstripdrainsinthistext)areinstalled(Lin.,etal,2017).Thedrainage coreofageocompositestripdrainislinkedtoorencapsulatedbyafiltrationgeotextile, whichprovidesfiltrationforthedrainagecore.Inthedrainagecore,syntheticpolymerslike polypropyleneandpolyesteraremixedwithPVC,polyolefin,andpolystyrenetocreatea cohesivestructure.Thecore'scompressivestrengthmustbe40poundspersquareinchor moreafterASTMD1621ProcedureAtesting.AccordingtoASTMD4716,adrainagecore withageotextilefullysurroundingitmusthaveaflowrateof0.1gallonspersecondperfoot ofstripwidthwhenmeasured.Drainagecomponentsareincludedinthestripdrains.Oncethe drainsarefitted,watermayflowfromthestripstotheoutsideofthewall.Dependingonthe 34 application,itisalsopossibletoconstructapipedrainatthewall'sbaseortouseweepholes todischargethroughthewall'sfaceandtoe. Installingandfinishingthenailsandgrout Tocompletetheprocedure,agrout-filledtremiepipeisusedtofillupthedrillholeoncethe tendonisplaced.Thegroutpipemustbeinsertedintothebottomofthedrillhole,andthe groutmustbeinjecteduntilthecavityisfilled.Astrongbonddevelopsbetweenthetendon andthesurroundingearthwhenthegroutsolidifies.Inmanycases,soilnailingisafeasible andcost-effectivealternativetogravitygroutingbecauseofthehighbondstrengthsthatmay beachieved.Grout'senhancedbondstrengthisaconsequenceofgreaterconfiningpressures, soilcompaction,increasedsoil-groutinterlocking,andanincreaseingrouteffectivediameter comparedtostrengthachievedwithgravitygrouting.Forfine-grainedsoils,pressuregrouting throughthecasingisseldomusedsincethebondresistanceimprovesonlylittlewhenthe soilsaremoist.Ifappropriateinstallationmethodsarenotfollowed,itisconceivablethatthe designbondresistancewillnotbeachieved.Asignificantreductioninbondresistancemay becausedbyinadequateremovalofdrillholecuttings.Excessivemechanicalcleaningofthe drillholemaycausetheclaytoberemoldedinclayeysoilswithmoderateplasticity,resulting inbondresistancevaluesthatareconsiderablylowerthanthoseanticipatedundercontrolled circumstancesforthesesoils.Toavoidfutureproblems,makesurethedrillholeisascleanas possiblebeforecontinuing. 35 ResultsandDiscussion . Usingthismethod,themodel'sboundaries,whichareplacedatadistanceof15metersfrom boththeslope'stoeandcrown,willnotobstructthesearchforkeyfailuresurfaces.The figureshowstheground'soriginalshapebeforeSlide2wasadded. 36 AslongastheFoSismorethantheminimumpermittedby-laws,standards,andregulations whilealsotakingintoaccounttheproject'ssignificance,theslopeisconsideredstable,andno furtherstepsneedtobedonetokeepitstable(Liu.,etal,2021).Conversely,iftheFoSis foundtobeinadequate,supportmeasuresmustbeimplemented.Fortheslopetobe consideredstableinthesimplifiedcase,itmusthaveanindicativeFoSgreaterthan1.25tobe stable. Slide2allowsthesimultaneousapplicationofseverallimitequilibriummethods(e.g., Ordinary,Bishop,Janbu,Spencer,Morgenstern-Price).Inthispart,we'llusetheBishopand Spencermethodsasanexample.Themaximumnumberofiterationsissetat50,andthe maximumnumberofslicespersurfaceevaluatedis30.Temperatureandhumidityandthe timeofyearmayhaveasignificantimpactonthelevelofthegroundwatertable.Consider thefollowingtwopossibilitiesforthelevelofthegroundwater: Firstandforemost,whenthegroundwatertableislow,thefailuresurfacesarenotinfluenced. Anunfavorableconditionwhenthebulkofthelandissituatedbelowthewatertable; 37 Secondly,whenconditionsaresaturated,pore-waterpressurebuildsup,reducingthe ground'sshearstrengthand,consequently,theslope'sForceonSlope(FoS).We'llcallthe firstsetofcircumstances"Dryconditions,"andthesecondsetofcircumstances"Partially saturatedconditions"tokeepthingssimple. a)Dryandb)Partiallysaturatedconditions Theanalysisshouldconsideranyadditionalexternalloadsthatmayaffecttheslope'sstability atthistime.Therearen'tanyexternalloadstoconsiderinthiscase.Thefailuresurfacesare thencalculatedusingeitheranautomatedgridorahumangridgeneratedusingSlide2.To ensurethatthenecessarysurfaceisincludedinthegrid,provideextraspacewhile constructingthegrid. Asaresultoftheproblembeingclearlystated,itcannowbeginthecomputationprocess.For slopesthataredryorsomewhatwet,usingtheBishopandSpencermethods,thecritical searchsurface(FoS). 38 Thereisaconsistentcriticalsurfaceinallcases(bothdryandpartlywetcircumstances). Aboutthreemetersbelowtheslope'scrown,itstartsandendsattheslope'stoeareitsstarting andendingpoints. Giventhegroundwaterconditions,thesafetyfactorscomputedbytheBishoporSpencer techniquesprovidevaluesthatareverynearlyidentical(dryorpartiallysaturated(Tokhi,H., 2016). 39 TheprocessofstabilizingaslopeisreferredtoasSlopeStabilization. Anengineermustcontinuallyensurethataslopeisstable,evenintheworst-casescenario. Stabilizationandexpansionoftheslope'sfieldofview(FoS)havebeenthesubjectofmany researchanddevelopmenteffortsovertheyears.Therearemanyinstancesofthesestrategies inaction,someofwhichdeservespecialmention.Someexamplesincludeinstallingdrainage features,constructingretainingwallsorbuttresses,usinggeotextiles,andanchoring structures. TheaimofemployingsupportmeasuresistoenhancetheFoSwhileusingtheabsolute minimumofnecessaryandeasilyavailableresourceswhiledesigninganoptimalsolution.As aresult,decidingonthebestsupportmethodsisdependentontheparticularcircumstances. ToimprovetheFOSoftheexampleslope,itwillberequiredtouseagroundstabilizing techniqueknownassoilnailing.Holesaredrilledintheslope'sfacetousethismethod,and steelbarsareinsertedintotheholes.Groutisusedtofillingtheholesoncetheyhavebeen cleanedout.Insoftsoilsandweakrockformations,soilnailsareoftenutilizedaspassive supportcomponentstokeepslopesstable.Amongtherequirementsforeachsoilnailarethe followingtechnicalcriteria: Generally,soilnailsshouldnotbelongerthan15metersduetothedifficultiesincreatingand maintainingthestabilityofthedrillholes.Length:Soilnailsareusuallybetween0.8and 1.2timeshigherthantheslope.Anormalsoilnailweighs0.81.2timesasmuchastheslope it'sattachedtomaximumtensileloadsforsoilnailsaregovernedbythematerial's(steel's) propertiesandthesoilnail'scross-sectionalarea's(cross-sectionalareaofthenail). 40 Todeterminethemaximumloadthatadirtnailplatecansupportatanyonemoment,use PlateCapacity.Thesoilnailshouldhavethegreatestshearandcompressioncapabilitiesitis capableofwithoutfailing,inadditiontotheshearandcompressioncapacities.theforcewith whichsoilnailsmaybeyankedoutofthegroundwhentheyarepulledoutAgridofsoil nailswillbeconstructedtosupportaslopingsurface,andotherfeatureswillneedtobe determined.Youknowwhotheyare: Out-of-planespacinginthethirddimensionreferstothedistanceinmetersbetween eachdirtnail(perpendiculartothe2Dcross-sectionalview). Soilnailsarespacedlongitudinally,horizontally,orvertically,dependingonwhether they'reusedinlandscaping. Todeterminetheangleoforientationofasoilnail,lookathowmuchitpointsaway fromthehorizontalplane. Importantconsiderationsincludethegeographicaldistributionofsoilnailsandthe slope'sstartingandendingpointsofsupportmeasures. Forthesimpleexampleanalysisshownabove,theassumedvaluesofthe characteristicsmentionedabovewereusedalongwiththestudy'sfindings,. 41 howsoilnailscanstabilizeaslopinggroundsurface.Foursoilnailsareassumedtobe presentinthe2Dcross-sectionalregionpermeter(inthethirddimension). 42 Asaresultoftheresearch,thefollowingfindingshavebeendrawn: ItisdeterminedthattheassistancemeasuresaresuitableduetoanewFoSthatconsidersboth theBishopandSpencerapproaches.Bothmethodsgeneratethesamecriticalfailuresurface. Itislongeranddeeperthanthecriticalfailuresurfacethatisderivedbyassumingan unreinforcedslopebecauseitdoesnotconnectwiththesoilnails.IntheBishopandSpencer techniques,soilnailsincreasedtheForceofSlope(FoS)by59%and61%,respectively,after placingthemontheslope.4.Aspartoftheoverallassessment,anupdatedFoSunderdry conditionsisalsocomputed.Itisfairtoassumethattheslopewillbesteadyevenindry conditionssincetheprecautionsareadequateevenwhenitispartiallywet.Despitethis, figuringoutitsFoSiscriticalforcomparison.Thisstudy'sresultsmaybeseeninFigures6a and6bandthetablebelow. UsingBishopandSpencertechniques,supportmeasuresincreasedry-weathersafetyby59 and60percent,resultinginhigherfactorsof60percentoverall.Thisexamplestudy'ssupport methodsmaybeemployedtostabilizetheslopeifit'sdeterminedthatthegroundwater conditionsaresuitable. Scenario1NoSupports TherewerenosignificantdifferencesbetweenScenario1withandwithoutSupportsand 43 Scenario1withSupports.Inthisexample,theslip-and-fallsurfaceswithaFactorofSafety oflessthan1.5areidentifiedusingtheSafetyMaptool(orangecolor).Soilnailsmustreach beyondtheslipsurfacefromtheslopefacetobeeffective. Scenario2Low-AngleSoilNails(15) Below,you'llseetheresultsofScenario2:LowAngleNails.Fivefeetvertically,sixfeet horizontally,and15degreestotheleftandright,they'rearrangedinasquarepattern. Scenario3High-AngleSoilNails(53) 44 Scenario3NailsataHighAngle(53)presentstheresultsintheaccompanyinggraph.The nailsareplaced5feetapartinaverticalrowandinclined53degreestowardtheearth's surface.Accordingtotheresults,usinghigh-anglesoilnailsreducesembedmentduration whileincreasingthesupports'capacitytoproducemoreresistingforceintheoriented direction.Theverticalsupportforcegeneratesadestabilizingmomentaroundthesliding mass'scenterofrotation,addingtotheinstability.SotheFactorofSafetyissmallerthanif thenailswereshallower,whichisabenefit. Scenario4RocscienceRedesign(15) FollowingisagraphicdepictingtheresultsofScenario4RocscienceRedesign(15).A15- degreeangletothegroundseparateseachnail,spaced5feetverticallyand6feethorizontally. LargerdirtnailswereutilizedtoimprovetheirperformancetoachieveaFactorofSafety greaterthan1.5onallslicksurfaces. 45 References Byrne,R.J.,Cotton,D.,Porterfield,J.,Wolschlag,C.andUeblacker,G.,1996.Manualfor designandconstructionmonitoringofsoilnailwalls. Lazarte,C.A.,Robinson,H.,Gmez,J.E.,Baxter,A.,Cadden,A.andBerg,R.,2015.Soil nailwallsreferencemanual(No.FHWA-NHI-14-007). Chee-Meng,C.andYean-Chin,T.,2006.Soilnaildesign:AMalaysianperspective. InInternationalConferenceonSlopes(pp.379-400). Lazarte,C.A.,Elias,V.,Sabatini,P.J.andEspinoza,R.D.,2003.Geotechnicalengineering circularNo.7-soilnailwalls(No.FHWA-IF-03-017).UnitedStates.FederalHighway Administration.OfficeofTechnologyApplications. Yuan,J.,Lin,P.,Mei,G.andHu,Y.,2019.Statisticalpredictionofdeformationsofsoilnail walls.ComputersandGeotechnics,115,p.103168. Su,L.J.,Chan,T.C.,Yin,J.H.,Shiu,Y.K.andChiu,S.L.,2008.Influenceofoverburden pressureonsoilnailpulloutresistanceinacompactedfill.Journalofgeotechnicaland geoenvironmentalengineering,134(9),pp.1339-1347. Babu,G.S.andSingh,V.P.,2008.Numericalanalysisofperformanceofsoilnailwallsin seismicconditions.ISETJournalofEarthquakeTechnology,45(1-2),pp.31-40. Turner,J.P.andJensen,W.G.,2005.Landslidestabilizationusingsoilnailandmechanically stabilizedearthwalls:casestudy.JournalofGeotechnicalandGeoenvironmental Engineering,131(2),pp.141-150. 46 Lee,C.F.,Law,K.T.,Tham,L.G.,Yue,Z.Q.andJunaideen,S.M.,2001.Designofalarge soilboxforstudyingsoil-nailinteractioninloosefill. Dai,Z.,Zhao,C.,Guo,C.andLin,P.,2021.Systemreliabilityanalysisofsoilnailwalls againstfacingfailures.InternationalJournalofGeomechanics,21(9),p.04021171. Lin,P.,Liu,J.andYuan,X.X.,2017.Reliabilityanalysisofsoilnailwallsagainstexternal failuresinlayeredground.JournalofGeotechnicalandGeoenvironmental Engineering,143(1),p.04016077. Babu,G.S.andSingh,V.P.,2009.SimulationofsoilnailstructuresusingPLAXIS 2D.PlaxisBulletin,25,pp.16-21. Liu,L.,Wu,R.,Congress,S.S.C.,Du,Q.,Cai,G.andLi,Z.,2021.Designoptimizationof thesoilnailwall-retainingpile-anchorcablesupportingsysteminalarge-scaledeep foundationpit.ActaGeotechnica,pp.1-24. Tokhi,H.,2016.Astudyofnewscrewsoilnail.RMITUniversity,CivilEnvironmentaland ChemicalEngineering,,Melbourne.
Enter the password to open this PDF file:
MyAssignmenthelp.com has gained the stature of being the most successful marketing assignment help providers in the USA. Other than marketing assignment, we also provide an array of expert quality engineering assignment help. Like our mechanical and electrical assignment help assist thousands of students every year. Wide ranges of affordable services contribute in making us one of the most popular websites. Some of our on demand services are English assignment help and taxation assignment help.
On APP - grab it while it lasts!
*Offer eligible for first 3 orders ordered through app!
ONLINE TO HELP YOU 24X7
OR GET MONEY BACK!
OUT OF 38983 REVIEWS
Received my assignment before my deadline request, paper was well written. Highly recommend.
Only one step away from your solution of order no.