Assume that you are a risk-averse investor.
For each of the two assets represented by the indices, calculate annual returns and build a frequency distribution of annual returns. Provide graphs of the distributions.
Explore the risk-return relationship for the two assets. Plot your results on a graph with the standard deviation of annual returns of each asset on the horizontal axis and the average annual return on the vertical axis, and comment on which asset performed better.
Assume that you form a portfolio by investing equal amount of money in each asset. Determine the average and standard deviation of the portfolio’s annual returns. Provide your interpretation of the risk and return of the equally-weighted portfolio compared to those of the individual assets.
Calculate and graph the average annual returns and standard deviations of all portfolios that are combinations of EURONEXT 100 (^N100) index and KBW Nasdaq Bank Index (^BKX), with the proportion of EURONEXT 100 (^N100) index being 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100%. Comment on the profile of the portfolios.
Assume that the NASDAQ 100 (^NDX) represents the market portfolio. Compute the excess returns of each of the two stocks that you have selected against that of the NASDAQ 100 (^NDX). Use the relevant short-term Treasury Bill rate as the risk-free rate in the capital asset pricing model (CAPM).Using the CAPM framework and regression analysis, provide the estimates of both systematic risk and theoretical return for the selected two stocks.
Discuss the results. Explain which of the two stocks has more systematic risk.
$3,299.18. The risk-free rate is 1.70%.
You are required to derive the implied volatility s (sigma) of the underlying asset from the current market price of the January 20th, 2023 call option on Amazon.com, Inc. common stock.
Assume an 18% starting value for s to set up a theoretical model of the price of the call option. Assume the stock does not pay a dividend before the expiry date. Comment on the results.