Get Instant Help From 5000+ Experts For

Writing: Get your essay and assignment written from scratch by PhD expert

Rewriting: Paraphrase or rewrite your friend's essay with similar meaning at reduced cost

Every assignment must be typed and a sufficient amount of work shown. Use correct calculus notation.  Graphs must be done electronically (I do not want hand drawn graphs.)  Directions for graphing using excel are available in blackboard.

You may ask for help with math assignments.

A car dealership keeps track of how much it spends on advertising each month and of its monthly revenue. From this information, the list of advertising expenditures and probable associated revenues are shown in the table below.

a.    Find a cubic polynomial that models the data.

b.    Find the first derivative and explain what it means in terms of the data.

c.    Find the relative extremes and explain what they mean in terms of the problem.

d.    Find the second derivative and explain what it means in terms of the data.

e.    Find the point of diminishing returns and explain what it means in terms of the data.

1. a)The general cubic polynomial

y=ax3+bx2+cx+ d

There are four unknowns

Using (5,150) = 150= 125a +25 b +5c +d………………………………. (1)

Using (7,200) = 200 =343a +49b +7c +d………………………………... (2)

Using (9,250) =250=729a +81b+9c +d…………………………………… (3)

Using (11,325) = 325= 1331a +121b+11c+d…………………………... (4)

From equation 1 and 2 we get 218a +24b +2c =50……………… (5)

From equation 2 and 3 we get 386a +32b +2c =50……………… (6)

From equation 3 and 4 we get 602a +40b +2c=75………………….. (7)

On solving the above equation 5, 6, 7 we get;

a=0.52

b=-10.92

c=99.47

d=-139.06

Cubic polynomial equation y=0.52x3-10.92x2 +99.47x -139.06

b)

y= 0.52x3-10.98x2 +99.47x -139.06

Dy/dx = (0.52)3x2- 10.98(2x) +99.47 = 1.56x2 -21.96x+99.47

The first derivatives give the extrema of function and where the and where revenue is increasing or decreasing.

c)

To find maxima and minima dy/dx=0

1.5x2 -21.96x+99.47 =0

X= (-b +-√b2- 4ac)/2a =1

X= 7.03 +3.771,   7.03 -3.771

Both of the equations are imaginary thus no maxima or minima is found.

d)

Second derivatives =d2y/dx2

d/dx (1.56x2 -21.96x +99.47) =3.12x -21.96

If second derivative is positive at the point when first derivative is zero, it signifies minimum revenue.

If second derivative is negative at the point when first derivative is zero, it signifies maximum revenue.

e)

The point of diminishing according to the graph which was drawn;

Point of diminishing returns refers to part of graph just after maximum point.

f)

The Graph of function from part a.

Cubic equation is 436 - 100 x + 12.1x2 - 0.347x

Rosenbaum, R. A. Calculus: Basic Concepts and Applications. London: CUP Archive, 2015. print.

Spivak, Michael. Calculus. Texas: Cambridge University Press, 2014. print.

Cite This Work

My Assignment Help. (2020). Solving Cubic Polynomial Equation | Maxima And Minima | Graph. Retrieved from https://myassignmenthelp.com/free-samples/mat-142-college-mathematics.

"Solving Cubic Polynomial Equation | Maxima And Minima | Graph." My Assignment Help, 2020, https://myassignmenthelp.com/free-samples/mat-142-college-mathematics.

My Assignment Help (2020) Solving Cubic Polynomial Equation | Maxima And Minima | Graph [Online]. Available from: https://myassignmenthelp.com/free-samples/mat-142-college-mathematics
[Accessed 20 May 2024].

My Assignment Help. 'Solving Cubic Polynomial Equation | Maxima And Minima | Graph' (My Assignment Help, 2020) <https://myassignmenthelp.com/free-samples/mat-142-college-mathematics> accessed 20 May 2024.

My Assignment Help. Solving Cubic Polynomial Equation | Maxima And Minima | Graph [Internet]. My Assignment Help. 2020 [cited 20 May 2024]. Available from: https://myassignmenthelp.com/free-samples/mat-142-college-mathematics.

Get instant help from 5000+ experts for

Writing: Get your essay and assignment written from scratch by PhD expert

Rewriting: Paraphrase or rewrite your friend's essay with similar meaning at reduced cost