Get Instant Help From 5000+ Experts For
question

Writing: Get your essay and assignment written from scratch by PhD expert

Rewriting: Paraphrase or rewrite your friend's essay with similar meaning at reduced cost

Editing:Proofread your work by experts and improve grade at Lowest cost

And Improve Your Grades
myassignmenthelp.com
loader
Phone no. Missing!

Enter phone no. to receive critical updates and urgent messages !

Attach file

Error goes here

Files Missing!

Please upload all relevant files for quick & complete assistance.

Guaranteed Higher Grade!
Free Quote
wave
Question:

Failure Data Analysis using Weibull Probability Plot

The air conditioning and pressurisation (ATA 21) system on aircraft is an essential system that regulates the pressure and the temperature in the cabin as well as supplies continuous flow of fresh air to ensure the comfort of the passengers throughout a flight.  

The system schematic diagram of a passenger transport aircraft is shown, while the failure data for the aircraft components collected from the aircraft fleet is compiled in

Table 1.

(a)Using the MS Excel application, construct the Weibull Probability Plot for each of the ten (10) components in the air conditioning and pressurisation system. The cumulative distribution function may be estimated using the median rank method.   

(b)For each of the Weibull Probability Plots drawn in (a), construct the best-fit straight line(s) connecting failure data points, and estimate the shape parameter and scale parameter for each best-fit straight line(s).  

(c)Comment on the failure patterns exhibited by each of the ten (10) components in the air conditioning and pressurisation system and estimate the MTBF values, where applicable.  Appraise one usage of the MTBF data.  

(d)Recommend the appropriate maintenance option for each of the ten (10) components in the air conditioning and pressurisation system. Note that some of these components may exhibit more than one failure pattern over its lifetime.    

Answer:
Using the MS excel application; construct the Weibull Probability Plot for each of the ten components in the air conditioning and pressurization system. The cumulative distribution function may be estimated using the median rank method
Weibull Plots And Analysis

In the first column of the tables 1 to 10, i represents the rank of the observed failure, i is the failure hours, N is the rank of the last item observed,  MR is Median Rank, Yi is the dependent variable derived by determining the natural logarithm of the natural logarithm of 1/1-MR and ln t is the natural logarithm of t (failure hours). Now, the median rank parameter is derived from the formula: MR= i-0.3/N+0.4 (standardized). Once this parameter is obtained by substituting i, and N appropriately, the other remaining columns can be filled using the formulae given. For example, to determine 1/1-MR in an excel program, we invoke the sum formula ensuring a negative is embedded, then raising this to the power of negative one (-1) as this is also mathematically equivalent to finding reciprocal of a number. It should be noted that once the first cell in each column is calculated, we simply replicate the rest by copy and pasting the 1st cell entry (the excel programme automatically generates the rest). The weibull probability plot entails a plot of Yi (vertical axis) against ln t.

Table 1: Cockpit temperature controller

Temperature

 

 

 

 

 

 

 

 

 

 

 

 

Controller

 

 

 

 

 

 

 

 

 

 

WEIBULL    PLOT

 

Failure Hours

i

ln t

i-0.3

N+0.4

MR

1-MR

1/1-MR

ln(1/1-MR)

Yi, (ln2)

 

lnt

Yi

250

1

5.521461

0.7

31.4

0.022293

0.977707

1.022801

0.022545

-3.79224

 

5.521461

-3.79224

300

2

5.703782

1.7

31.4

0.05414

0.94586

1.057239

0.055661

-2.88848

 

5.703782

-2.88848

320

3

5.768321

2.7

31.4

0.085987

0.914013

1.094076

0.08991

-2.40894

 

5.768321

-2.40894

760

5

6.633318

4.7

31.4

0.149681

0.850319

1.176029

0.162144

-1.81927

 

6.633318

-1.81927

860

6

6.756932

5.7

31.4

0.181528

0.818472

1.221789

0.200316

-1.60786

 

6.756932

-1.60786

920

7

6.824374

6.7

31.4

0.213375

0.786625

1.271254

0.240004

-1.4271

 

6.824374

-1.4271

1,000

8

6.907755

7.7

31.4

0.245222

0.754778

1.324893

0.281331

-1.26822

 

6.907755

-1.26822

1,090

9

6.993933

8.7

31.4

0.277069

0.722931

1.383258

0.324441

-1.12565

 

6.993933

-1.12565

1,990

10

7.59589

9.7

31.4

0.308916

0.691084

1.447002

0.369494

-0.99562

 

7.59589

-0.99562

1,990

11

7.59589

10.7

31.4

0.340763

0.659237

1.516905

0.416672

-0.87546

 

7.59589

-0.87546

2,040

12

7.620705

11.7

31.4

0.37261

0.62739

1.593905

0.466187

-0.76317

 

7.620705

-0.76317

2,810

13

7.94094

12.7

31.4

0.404457

0.595543

1.67914

0.518282

-0.65724

 

7.94094

-0.65724

2,980

14

7.999679

13.7

31.4

0.436304

0.563696

1.774006

0.57324

-0.55645

 

7.999679

-0.55645

3,540

15

8.171882

14.7

31.4

0.468151

0.531849

1.880233

0.631395

-0.45982

 

8.171882

-0.45982

3,680

16

8.210668

15.7

31.4

0.499998

0.500002

1.999992

0.693143

-0.36652

 

8.210668

-0.36652

4,990

17

8.515191

16.7

31.4

0.531845

0.468155

2.136044

0.758956

-0.27581

 

8.515191

-0.27581

5,320

18

8.579229

17.7

31.4

0.563692

0.436308

2.291958

0.829407

-0.18704

 

8.579229

-0.18704

8,010

19

8.988446

18.7

31.4

0.595539

0.404461

2.472426

0.9052

-0.0996

 

8.988446

-0.0996

8,600

20

9.059517

19.7

31.4

0.627386

0.372614

2.683742

0.987212

-0.01287

 

9.059517

-0.01287

8,930

21

9.097172

20.7

31.4

0.659233

0.340767

2.934556

1.076556

0.073767

 

9.097172

0.073767

10,280

22

9.237956

21.7

31.4

0.69108

0.30892

3.237083

1.174673

0.160989

 

9.237956

0.160989

10,570

23

9.265775

22.7

31.4

0.722927

0.277073

3.609156

1.283474

0.24957

 

9.265775

0.24957

10,690

24

9.277064

23.7

31.4

0.754774

0.245226

4.077869

1.405575

0.340446

 

9.277064

0.340446

12,150

25

9.405084

24.7

31.4

0.786621

0.213379

4.686495

1.544685

0.43482

 

9.405084

0.43482

12,690

26

9.44857

25.7

31.4

0.818468

0.181532

5.508668

1.706323

0.534341

 

9.44857

0.534341

15,060

27

9.619798

26.7

31.4

0.850315

0.149685

6.680692

1.899222

0.641444

 

9.619798

0.641444

19,670

28

9.88685

27.7

31.4

0.882162

0.117838

8.48622

2.138444

0.760078

 

9.88685

0.760078

19,830

29

9.894951

28.7

31.4

0.914009

0.085991

11.62911

2.453511

0.89752

 

9.894951

0.89752

20,880

30

9.946547

29.7

31.4

0.945856

0.054144

18.46923

2.916106

1.070249

 

9.946547

1.070249

22,850

31

10.03671

30.7

31.4

0.977703

0.022297

44.84888

3.803299

1.335869

 

10.03671

1.335869

 

N=31

 

 

 

 

 

 

 

 

 

 

 

Table 2: Overtemp switch

Over-Temp Switch

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WEIBULL    PLOT

 

Failure Hours

i

ln t

i-0.3

N+0.4

MR

1-MR

1/1-MR

ln(1/1-MR)

Yi, (ln2)

 

lnt

Yi

280

1

5.63479

0.7

30.4

0.02303

0.97697

1.02357

0.0232955

-3.75949

 

5.63479

-3.75949

930

2

6.83518

1.7

30.4

0.05592

0.94408

1.05923

0.0575454

-2.85518

 

6.835185

-2.85518

3,030

3

8.01632

2.7

30.4

0.08882

0.91118

1.09747

0.0930101

-2.37505

 

8.016318

-2.37505

3,340

4

8.11373

3.7

30.4

0.12171

0.87829

1.13858

0.1297789

-2.04192

 

8.113726

-2.04192

3,960

5

8.28400

4.7

30.4

0.15461

0.84539

1.18288

0.1679514

-1.78408

 

8.283999

-1.78408

4,810

6

8.47845

5.7

30.4

0.18750

0.81250

1.23077

0.2076391

-1.57195

 

8.478452

-1.57195

5,100

7

8.53700

6.7

30.4

0.22039

0.77961

1.28270

0.2489672

-1.39043

 

8.536996

-1.39043

5,780

8

8.66216

7.7

30.4

0.25329

0.74671

1.33921

0.2920773

-1.23074

 

8.662159

-1.23074

6,030

9

8.70450

8.7

30.4

0.28618

0.71382

1.40092

0.3371299

-1.08729

 

8.704502

-1.08729

7,070

10

8.86362

9.7

30.4

0.31908

0.68092

1.46860

0.3843084

-0.95631

 

8.863616

-0.95631

7,350

11

8.90246

10.7

30.4

0.35197

0.64803

1.54315

0.4338234

-0.83512

 

8.902456

-0.83512

7,780

12

8.95931

11.7

30.4

0.38487

0.61513

1.62567

0.4859184

-0.72171

 

8.959312

-0.72171

8,860

13

9.08930

12.7

30.4

0.41776

0.58224

1.71751

0.5408772

-0.61456

 

9.089302

-0.61456

8,960

14

9.10053

13.7

30.4

0.45066

0.54934

1.82036

0.599033

-0.51244

 

9.100526

-0.51244

9,570

15

9.16639

14.7

30.4

0.48355

0.51645

1.93630

0.6607808

-0.41433

 

9.166388

-0.41433

10,040

16

9.21433

15.7

30.4

0.51645

0.48355

2.06802

0.7265939

-0.31939

 

9.214332

-0.31939

12,290

17

9.41654

16.7

30.4

0.54934

0.45066

2.21898

0.7970454

-0.22684

 

9.416541

-0.22684

14,510

18

9.58259

17.7

30.4

0.58224

0.41776

2.39370

0.8728391

-0.136

 

9.582593

-0.136

15,430

19

9.64407

18.7

30.4

0.61513

0.38487

2.59829

0.954852

-0.0462

 

9.644069

-0.0462

17,910

20

9.79311

19.7

30.4

0.64803

0.35197

2.84112

1.0441968

0.043248

 

9.793114

0.043248

19,560

21

9.88124

20.7

30.4

0.68092

0.31908

3.13401

1.1423143

0.133056

 

9.881242

0.133056

20,090

22

9.90798

21.7

30.4

0.71381

0.28619

3.49424

1.2511168

0.224037

 

9.907977

0.224037

21,670

23

9.98368

22.7

30.4

0.74671

0.25329

3.94804

1.373219

0.317158

 

9.983684

0.317158

34,960

24

10.46196

23.7

30.4

0.77960

0.22040

4.53730

1.5123311

0.413652

 

10.46196

0.413652

36,420

25

10.50287

24.7

30.4

0.81250

0.18750

5.33331

1.6739716

0.515199

 

10.50287

0.515199

38,220

26

10.55111

25.7

30.4

0.84539

0.15461

6.46805

1.866874

0.624265

 

10.55111

0.624265

38,840

27

10.56721

26.7

30.4

0.87829

0.12171

8.21615

2.1061017

0.744839

 

10.56721

0.744839

44,410

28

10.70122

27.7

30.4

0.91118

0.08882

11.25913

2.4211793

0.884255

 

10.70122

0.884255

54,280

29

10.90191

28.7

30.4

0.94408

0.05592

17.88201

2.8837954

1.059107

 

10.90191

1.059107

70,570

30

11.16436

29.7

30.4

0.97697

0.02303

43.42651

3.77107

1.327359

 

11.16436

1.327359

TOTAL

 

 

 

 

 

 

 

 

 

 

 

 

Table3: Duct temperature sensor

Duct

 

 

 

 

 

 

 

 

 

 

 

 

Temperature

 

 

 

 

 

 

 

 

 

 

 

 

Sensor

 

 

 

 

 

 

 

 

 

 

WEIBULL    PLOT

 

Failure Hours

i

ln t

i-0.3

N+0.4

MR

1-MR

1/1-MR

ln(1/1-MR)

Yi, (ln2)

 

lnt

Yi

600

1

6.39693

0.7

30.4

0.02303

0.97697

1.02357

0.023296

-3.75949

 

6.39693

-3.75949

1,000

2

6.907755

1.7

30.4

0.05592

0.94408

1.05923

0.057545

-2.85518

 

6.907755

-2.85518

1,600

3

7.377759

2.7

30.4

0.08882

0.91118

1.09747

0.09301

-2.37505

 

7.377759

-2.37505

1,600

4

7.377759

3.7

30.4

0.12171

0.87829

1.13858

0.129779

-2.04192

 

7.377759

-2.04192

1,800

5

7.495542

4.7

30.4

0.15461

0.84539

1.18288

0.167951

-1.78408

 

7.495542

-1.78408

2,140

6

7.668561

5.7

30.4

0.18750

0.81250

1.23077

0.207639

-1.57195

 

7.668561

-1.57195

2,200

7

7.696213

6.7

30.4

0.22039

0.77961

1.28270

0.248967

-1.39043

 

7.696213

-1.39043

2,460

8

7.807917

7.7

30.4

0.25329

0.74671

1.33921

0.292077

-1.23074

 

7.807917

-1.23074

3,320

9

8.10772

8.7

30.4

0.28618

0.71382

1.40092

0.33713

-1.08729

 

8.10772

-1.08729

3,330

10

8.110728

9.7

30.4

0.31908

0.68092

1.46860

0.384308

-0.95631

 

8.110728

-0.95631

3,590

11

8.185907

10.7

30.4

0.35197

0.64803

1.54315

0.433823

-0.83512

 

8.185907

-0.83512

3,860

12

8.258422

11.7

30.4

0.38487

0.61513

1.62567

0.485918

-0.72171

 

8.258422

-0.72171

4,250

13

8.354674

12.7

30.4

0.41776

0.58224

1.71751

0.540877

-0.61456

 

8.354674

-0.61456

5,240

14

8.564077

13.7

30.4

0.45066

0.54934

1.82036

0.599033

-0.51244

 

8.564077

-0.51244

5,480

15

8.60886

14.7

30.4

0.48355

0.51645

1.93630

0.660781

-0.41433

 

8.60886

-0.41433

5,590

16

8.628735

15.7

30.4

0.51645

0.48355

2.06802

0.726594

-0.31939

 

8.628735

-0.31939

9,090

17

9.11493

16.7

30.4

0.54934

0.45066

2.21898

0.797045

-0.22684

 

9.11493

-0.22684

9,570

18

9.166388

17.7

30.4

0.58224

0.41776

2.39370

0.872839

-0.136

 

9.166388

-0.136

11,110

19

9.315601

18.7

30.4

0.61513

0.38487

2.59829

0.954852

-0.0462

 

9.315601

-0.0462

14,110

20

9.554639

19.7

30.4

0.64803

0.35197

2.84112

1.044197

0.043248

 

9.554639

0.043248

14,840

21

9.605082

20.7

30.4

0.68092

0.31908

3.13401

1.142314

0.133056

 

9.605082

0.133056

17,310

22

9.75904

21.7

30.4

0.71381

0.28619

3.49424

1.251117

0.224037

 

9.75904

0.224037

17,980

23

9.797015

22.7

30.4

0.74671

0.25329

3.94804

1.373219

0.317158

 

9.797015

0.317158

23,150

24

10.04975

23.7

30.4

0.77960

0.22040

4.53730

1.512331

0.413652

 

10.04975

0.413652

23,180

25

10.05105

24.7

30.4

0.81250

0.18750

5.33331

1.673972

0.515199

 

10.05105

0.515199

28,690

26

10.2643

25.7

30.4

0.84539

0.15461

6.46805

1.866874

0.624265

 

10.2643

0.624265

30,670

27

10.33104

26.7

30.4

0.87829

0.12171

8.21615

2.106102

0.744839

 

10.33104

0.744839

36,780

28

10.51271

27.7

30.4

0.91118

0.08882

11.25913

2.421179

0.884255

 

10.51271

0.884255

36,790

29

10.51298

28.7

30.4

0.94408

0.05592

17.88201

2.883795

1.059107

 

10.51298

1.059107

98,830

30

11.50116

29.7

30.4

0.97697

0.02303

43.42651

3.77107

1.327359

 

11.50116

1.327359

TOTAL

 

 

 

 

 

 

 

 

 

 

 

 

Duct temperature sensor

Table 4: Control System shut off valve SOV

Environmental Pressure Regulating

 

 

 

 

 

 

 

 

 

 

 

Control System  Shut-off Valve

 

 

 

 

 

 

 

 

 

 

 

(ECS) (SOV)

 

 

 

 

 

 

 

 

 

WEIBULL    PLOT

 

Failure Hours

i

ln t

i-0.3

N+0.4

MR

1-MR

1/1-MR

ln(1/1-MR)

Yi, (ln2)

 

lnt

Yi

930

1

6.835185

0.7

30.4

0.02303

0.97697

1.02357

0.023296

-3.75949

 

6.835185

-3.75949

1,000

2

6.907755

1.7

30.4

0.05592

0.94408

1.05923

0.057545

-2.85518

 

6.907755

-2.85518

1,110

3

7.012115

2.7

30.4

0.08882

0.91118

1.09747

0.09301

-2.37505

 

7.012115

-2.37505

1,980

4

7.590852

3.7

30.4

0.12171

0.87829

1.13858

0.129779

-2.04192

 

7.590852

-2.04192

2,240

5

7.714231

4.7

30.4

0.15461

0.84539

1.18288

0.167951

-1.78408

 

7.714231

-1.78408

2,470

6

7.811973

5.7

30.4

0.18750

0.81250

1.23077

0.207639

-1.57195

 

7.811973

-1.57195

4,150

7

8.330864

6.7

30.4

0.22039

0.77961

1.28270

0.248967

-1.39043

 

8.330864

-1.39043

4,830

8

8.482602

7.7

30.4

0.25329

0.74671

1.33921

0.292077

-1.23074

 

8.482602

-1.23074

5,340

9

8.582981

8.7

30.4

0.28618

0.71382

1.40092

0.33713

-1.08729

 

8.582981

-1.08729

6,160

10

8.725832

9.7

30.4

0.31908

0.68092

1.46860

0.384308

-0.95631

 

8.725832

-0.95631

6,650

11

8.802372

10.7

30.4

0.35197

0.64803

1.54315

0.433823

-0.83512

 

8.802372

-0.83512

6,830

12

8.82908

11.7

30.4

0.38487

0.61513

1.62567

0.485918

-0.72171

 

8.82908

-0.72171

7,500

13

8.922658

12.7

30.4

0.41776

0.58224

1.71751

0.540877

-0.61456

 

8.922658

-0.61456

8,140

14

9.004545

13.7

30.4

0.45066

0.54934

1.82036

0.599033

-0.51244

 

9.004545

-0.51244

9,320

15

9.139918

14.7

30.4

0.48355

0.51645

1.93630

0.660781

-0.41433

 

9.139918

-0.41433

9,740

16

9.183996

15.7

30.4

0.51645

0.48355

2.06802

0.726594

-0.31939

 

9.183996

-0.31939

9,940

17

9.204322

16.7

30.4

0.54934

0.45066

2.21898

0.797045

-0.22684

 

9.204322

-0.22684

14,080

18

9.552511

17.7

30.4

0.58224

0.41776

2.39370

0.872839

-0.136

 

9.552511

-0.136

15,550

19

9.651816

18.7

30.4

0.61513

0.38487

2.59829

0.954852

-0.0462

 

9.651816

-0.0462

18,210

20

9.809726

19.7

30.4

0.64803

0.35197

2.84112

1.044197

0.043248

 

9.809726

0.043248

21,270

21

9.965053

20.7

30.4

0.68092

0.31908

3.13401

1.142314

0.133056

 

9.965053

0.133056

22,390

22

10.01637

21.7

30.4

0.71381

0.28619

3.49424

1.251117

0.224037

 

10.01637

0.224037

26,100

23

10.16969

22.7

30.4

0.74671

0.25329

3.94804

1.373219

0.317158

 

10.16969

0.317158

27,950

24

10.23817

23.7

30.4

0.77960

0.22040

4.53730

1.512331

0.413652

 

10.23817

0.413652

33,220

25

10.41091

24.7

30.4

0.81250

0.18750

5.33331

1.673972

0.515199

 

10.41091

0.515199

37,760

26

10.53901

25.7

30.4

0.84539

0.15461

6.46805

1.866874

0.624265

 

10.53901

0.624265

42,910

27

10.66686

26.7

30.4

0.87829

0.12171

8.21615

2.106102

0.744839

 

10.66686

0.744839

47,820

28

10.7752

27.7

30.4

0.91118

0.08882

11.25913

2.421179

0.884255

 

10.7752

0.884255

64,060

29

11.06758

28.7

30.4

0.94408

0.05592

17.88201

2.883795

1.059107

 

11.06758

1.059107

66,680

30

11.10766

29.7

30.4

0.97697

0.02303

43.42651

3.77107

1.327359

 

11.10766

1.327359

TOTAL

 

 

 

 

 

 

 

 

 

 

 

 

Control system shut off valve

Table 5

Environmental Pressure Regulating

 

 

 

 

 

 

 

 

 

 

 

Control System  Shut-off Valve

 

 

 

 

 

 

 

 

 

 

 

(ECS) (SOV)

 

 

 

 

 

 

 

 

 

WEIBULL    PLOT

 

Failure Hours

i

ln t

i-0.3

N+0.4

MR

1-MR

1/1-MR

ln(1/1-MR)

Yi, (ln2)

 

lnt

Yi

2,220

1

7.705262

0.7

10.4

0.067308

0.932692

1.072165

0.0696799

-2.66384

 

7.705262

-2.66384

2,320

2

7.749322

1.7

10.4

0.163461

0.836539

1.195402

0.1784827

-1.72326

 

7.749322

-1.72326

2,330

3

7.753624

2.7

10.4

0.259615

0.740385

1.350649

0.3005853

-1.20202

 

7.753624

-1.20202

2,940

4

7.986165

3.7

10.4

0.355769

0.644231

1.552238

0.439698

-0.82167

 

7.986165

-0.82167

3,140

5

8.051978

4.7

10.4

0.451923

0.548077

1.824561

0.6013392

-0.5086

 

8.051978

-0.5086

3,600

6

8.188689

5.7

10.4

0.548077

0.451923

2.212765

0.7942427

-0.23037

 

8.188689

-0.23037

4,500

7

8.411833

6.7

10.4

0.64423

0.35577

2.810808

1.0334721

0.032924

 

8.411833

0.032924

4,660

8

8.446771

7.7

10.4

0.740384

0.259616

3.851847

1.3485527

0.299032

 

8.446771

0.299032

4,700

9

8.455318

8.7

10.4

0.836538

0.163462

6.117632

1.8111751

0.593976

 

8.455318

0.593976

4,750

10

8.4659

9.7

10.4

0.932692

0.067308

14.85704

2.6984741

0.992686

 

8.4659

0.992686

TOTAL

10

 

 

 

 

 

 

 

 

 

 

 

Table 6: Temperature modulating valve

Temperature Modulating Valve

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WEIBULL    PLOT

 

Failure Hours

i

ln t

i-0.3

N+0.4

MR

1-MR

1/1-MR

ln(1/1-MR)

Yi, (ln2)

 

lnt

Yi

1,950

1

7.575585

0.7

15.4

0.045455

0.954546

1.047619

0.04652

-3.06787

 

7.575585

-3.06787

2,300

2

7.740664

1.7

15.4

0.11039

0.889611

1.124087

0.116972

-2.14582

 

7.740664

-2.14582

2,400

3

7.783224

2.7

15.4

0.175325

0.824676

1.212598

0.192765

-1.64628

 

7.783224

-1.64628

2,430

4

7.795647

3.7

15.4

0.24026

0.759741

1.316239

0.274778

-1.29179

 

7.795647

-1.29179

2,500

5

7.824046

4.7

15.4

0.305195

0.694806

1.439252

0.364123

-1.01026

 

7.824046

-1.01026

2,890

6

7.969012

5.7

15.4

0.37013

0.629871

1.587628

0.462241

-0.77167

 

7.969012

-0.77167

3,000

7

8.006368

6.7

15.4

0.435065

0.564936

1.770114

0.571044

-0.56029

 

8.006368

-0.56029

3,010

8

8.009695

7.7

15.4

0.5

0.500001

1.999998

0.693146

-0.36651

 

8.009695

-0.36651

3,020

9

8.013012

8.7

15.4

0.564935

0.435066

2.298504

0.832259

-0.18361

 

8.013012

-0.18361

3,190

10

8.067776

9.7

15.4

0.62987

0.370131

2.70175

0.9939

-0.00612

 

8.067776

-0.00612

3,500

11

8.160518

10.7

15.4

0.694805

0.305196

3.276588

1.186803

0.171263

 

8.160518

0.171263

3,500

12

8.160518

11.7

15.4

0.75974

0.240261

4.162149

1.426032

0.354895

 

8.160518

0.354895

3,550

13

8.174703

12.7

15.4

0.824675

0.175326

5.703677

1.741111

0.554523

 

8.174703

0.554523

4,450

14

8.400659

13.7

15.4

0.88961

0.110391

9.058751

2.203731

0.790152

 

8.400659

0.790152

4,550

15

8.422883

14.7

15.4

0.954545

0.045456

21.99954

3.091021

1.128502

 

8.422883

1.128502

TOTAL

15

 

 

 

 

 

 

 

 

 

 

 

Table 7: Non-return valve

Non-Return Valve

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WEIBULL    PLOT

 

Failure Hours

i

ln t

i-0.3

N+0.4

MR

1-MR

1/1-MR

ln(1/1-MR)

Yi, (ln2)

 

lnt

Yi

20

1

2.995732

0.7

19.4

0.036082

0.963918

1.037433

0.036749

-3.30364

 

2.995732

-3.30364

70

2

4.248495

1.7

19.4

0.087628

0.912372

1.096044

0.091708

-2.38915

 

4.248495

-2.38915

250

3

5.521461

2.7

19.4

0.139174

0.860826

1.161675

0.149863

-1.89803

 

5.521461

-1.89803

320

4

5.768321

3.7

19.4

0.19072

0.80928

1.235667

0.211611

-1.55301

 

5.768321

-1.55301

350

5

5.857933

4.7

19.4

0.242266

0.757734

1.319725

0.277423

-1.28221

 

5.857933

-1.28221

360

6

5.886104

5.7

19.4

0.293812

0.706188

1.416054

0.347874

-1.05591

 

5.886104

-1.05591

440

7

6.086775

6.7

19.4

0.345358

0.654642

1.527553

0.423667

-0.85881

 

6.086775

-0.85881

480

8

6.173786

7.7

19.4

0.396904

0.603096

1.658111

0.505679

-0.68185

 

6.173786

-0.68185

730

9

6.593045

8.7

19.4

0.44845

0.55155

1.813073

0.595023

-0.51915

 

6.593045

-0.51915

800

10

6.684612

9.7

19.4

0.499996

0.500004

1.999985

0.69314

-0.36652

 

6.684612

-0.36652

950

11

6.856462

10.7

19.4

0.551542

0.448458

2.229864

0.801941

-0.22072

 

6.856462

-0.22072

1,050

12

6.956545

11.7

19.4

0.603088

0.396912

2.519451

0.924041

-0.079

 

6.956545

-0.079

1,100

13

7.003065

12.7

19.4

0.654634

0.345366

2.895481

1.063151

0.061237

 

7.003065

0.061237

1,520

14

7.326466

13.7

19.4

0.70618

0.29382

3.403447

1.224789

0.202768

 

7.326466

0.202768

1,580

15

7.36518

14.7

19.4

0.757726

0.242274

4.127561

1.417687

0.349027

 

7.36518

0.349027

1,640

16

7.402452

15.7

19.4

0.809272

0.190728

5.243074

1.656908

0.504953

 

7.402452

0.504953

1,830

17

7.512071

16.7

19.4

0.860818

0.139182

7.184847

1.971974

0.679035

 

7.512071

0.679035

1,850

18

7.522941

17.7

19.4

0.912364

0.087636

11.41086

2.434566

0.889768

 

7.522941

0.889768

1,900

19

7.549609

18.7

19.4

0.96391

0.03609

27.70866

3.321745

1.20049

 

7.549609

1.20049

TOTAL

N=19

 

 

 

 

 

 

 

 

 

 

 

Table 8: Shutoff valve

Shut-off Valve (SOV)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WEIBULL    PLOT

 

Failure Hours

I

ln t

i-0.3

N+0.4

MR

1-MR

1/1-MR

ln(1/1-MR)

Yi, (ln2)

 

lnt

Yi

220

1

5.393628

0.7

20.4

0.034314

0.965686

1.035533

0.034916

-3.3548

 

5.393628

-3.3548

280

2

5.63479

1.7

20.4

0.083333

0.916667

1.090909

0.087011

-2.44172

 

5.63479

-2.44172

440

3

6.086775

2.7

20.4

0.132353

0.867647

1.152542

0.14197

-1.95214

 

6.086775

-1.95214

800

4

6.684612

3.7

20.4

0.181373

0.818627

1.221557

0.200126

-1.60881

 

6.684612

-1.60881

1,660

5

7.414573

4.7

20.4

0.230392

0.769608

1.299363

0.261874

-1.33989

 

7.414573

-1.33989

1,840

6

7.517521

5.7

20.4

0.279412

0.720588

1.387755

0.327687

-1.1157

 

7.517521

-1.1157

1,900

7

7.549609

6.7

20.4

0.328431

0.671569

1.489051

0.398139

-0.92095

 

7.549609

-0.92095

2,120

8

7.659171

7.7

20.4

0.377451

0.622549

1.606299

0.473933

-0.74669

 

7.659171

-0.74669

2,620

9

7.87093

8.7

20.4

0.426471

0.573529

1.74359

0.555946

-0.58708

 

7.87093

-0.58708

2,720

10

7.908387

9.7

20.4

0.47549

0.52451

1.906542

0.645291

-0.43805

 

7.908387

-0.43805

2,820

11

7.944492

10.7

20.4

0.52451

0.47549

2.103092

0.743409

-0.29651

 

7.944492

-0.29651

2,840

12

7.951559

11.7

20.4

0.573529

0.426471

2.344827

0.852212

-0.15992

 

7.951559

-0.15992

3,480

13

8.154788

12.7

20.4

0.622549

0.377451

2.64935

0.974314

-0.02602

 

8.154788

-0.02602

4,240

14

8.352319

13.7

20.4

0.671569

0.328431

3.044775

1.113427

0.107443

 

8.352319

0.107443

4,540

15

8.420682

14.7

20.4

0.720588

0.279412

3.578946

1.275068

0.243

 

8.420682

0.243

5,460

16

8.605204

15.7

20.4

0.769608

0.230392

4.340423

1.467972

0.383882

 

8.605204

0.383882

5,840

17

8.672486

16.7

20.4

0.818627

0.181373

5.51351

1.707201

0.534855

 

8.672486

0.534855

5,940

18

8.689464

17.7

20.4

0.867647

0.132353

7.555548

2.022282

0.704227

 

8.689464

0.704227

6,760

19

8.818778

18.7

20.4

0.916667

0.083333

11.99998

2.484905

0.910234

 

8.818778

0.910234

7,640

20

8.941153

19.7

20.4

0.965686

0.034314

29.14273

3.372205

1.215567

 

8.941153

1.215567

TOTAL

20

 

 

 

 

 

 

 

 

 

 

 

Table 9: Cabin temperature controller

Cabin

 

 

 

 

 

 

 

 

 

 

 

 

Temperature

 

 

 

 

 

 

 

 

 

 

 

 

Controller

 

 

 

 

 

 

 

 

 

 

WEIBULL    PLOT

 

Failure Hours

i

ln t

i-0.3

N+0.4

MR

1-MR

1/1-MR

ln(1/1-MR)

Yi, (ln2)

 

lnt

Yi

270

1

5.598422

0.7

30.4

0.02303

0.97697

1.02357

0.023296

-3.75949

 

5.598422

-3.75949

340

2

5.828946

1.7

30.4

0.05592

0.94408

1.05923

0.057545

-2.85518

 

5.828946

-2.85518

910

3

6.813445

2.7

30.4

0.08882

0.91118

1.09747

0.09301

-2.37505

 

6.813445

-2.37505

1,510

4

7.319865

3.7

30.4

0.12171

0.87829

1.13858

0.129779

-2.04192

 

7.319865

-2.04192

1,630

5

7.396335

4.7

30.4

0.15461

0.84539

1.18288

0.167951

-1.78408

 

7.396335

-1.78408

1,800

6

7.495542

5.7

30.4

0.18750

0.81250

1.23077

0.207639

-1.57195

 

7.495542

-1.57195

1,960

7

7.5807

6.7

30.4

0.22039

0.77961

1.28270

0.248967

-1.39043

 

7.5807

-1.39043

2,350

8

7.762171

7.7

30.4

0.25329

0.74671

1.33921

0.292077

-1.23074

 

7.762171

-1.23074

2,600

9

7.863267

8.7

30.4

0.28618

0.71382

1.40092

0.33713

-1.08729

 

7.863267

-1.08729

2,630

10

7.874739

9.7

30.4

0.31908

0.68092

1.46860

0.384308

-0.95631

 

7.874739

-0.95631

2,720

11

7.908387

10.7

30.4

0.35197

0.64803

1.54315

0.433823

-0.83512

 

7.908387

-0.83512

2,840

12

7.951559

11.7

30.4

0.38487

0.61513

1.62567

0.485918

-0.72171

 

7.951559

-0.72171

3,120

13

8.045588

12.7

30.4

0.41776

0.58224

1.71751

0.540877

-0.61456

 

8.045588

-0.61456

4,550

14

8.422883

13.7

30.4

0.45066

0.54934

1.82036

0.599033

-0.51244

 

8.422883

-0.51244

5,210

15

8.558335

14.7

30.4

0.48355

0.51645

1.93630

0.660781

-0.41433

 

8.558335

-0.41433

5,630

16

8.635865

15.7

30.4

0.51645

0.48355

2.06802

0.726594

-0.31939

 

8.635865

-0.31939

5,820

17

8.669056

16.7

30.4

0.54934

0.45066

2.21898

0.797045

-0.22684

 

8.669056

-0.22684

6,230

18

8.737132

17.7

30.4

0.58224

0.41776

2.39370

0.872839

-0.136

 

8.737132

-0.136

7,020

19

8.856518

18.7

30.4

0.61513

0.38487

2.59829

0.954852

-0.0462

 

8.856518

-0.0462

8,890

20

9.092682

19.7

30.4

0.64803

0.35197

2.84112

1.044197

0.043248

 

9.092682

0.043248

9,570

21

9.166388

20.7

30.4

0.68092

0.31908

3.13401

1.142314

0.133056

 

9.166388

0.133056

10,000

22

9.21034

21.7

30.4

0.71381

0.28619

3.49424

1.251117

0.224037

 

9.21034

0.224037

10,940

23

9.300181

22.7

30.4

0.74671

0.25329

3.94804

1.373219

0.317158

 

9.300181

0.317158

11,360

24

9.337854

23.7

30.4

0.77960

0.22040

4.53730

1.512331

0.413652

 

9.337854

0.413652

13,970

25

9.544667

24.7

30.4

0.81250

0.18750

5.33331

1.673972

0.515199

 

9.544667

0.515199

17,460

26

9.767668

25.7

30.4

0.84539

0.15461

6.46805

1.866874

0.624265

 

9.767668

0.624265

21,110

27

9.957502

26.7

30.4

0.87829

0.12171

8.21615

2.106102

0.744839

 

9.957502

0.744839

21,960

28

9.996978

27.7

30.4

0.91118

0.08882

11.25913

2.421179

0.884255

 

9.996978

0.884255

26,750

29

10.19429

28.7

30.4

0.94408

0.05592

17.88201

2.883795

1.059107

 

10.19429

1.059107

31,030

30

10.34271

29.7

30.4

0.97697

0.02303

43.42651

3.77107

1.327359

 

10.34271

1.327359

Table 10: Cockpit temperature controller

Cockpit

 

 

 

 

 

 

 

 

 

 

 

 

Temperature

 

 

 

 

 

 

 

 

 

 

 

 

Controller

 

 

 

 

 

 

 

 

 

 

WEIBULL    PLOT

 

Failure Hours

i

ln t

i-0.3

N+0.4

MR

1-MR

1/1-MR

ln(1/1-MR)

Yi, (ln2)

 

lnt

Yi

250

1

5.521461

0.7

31.4

0.022293

0.977707

1.022801

0.022545

-3.79224

 

5.521461

-3.79224

300

2

5.703782

1.7

31.4

0.05414

0.94586

1.057239

0.055661

-2.88848

 

5.703782

-2.88848

320

3

5.768321

2.7

31.4

0.085987

0.914013

1.094076

0.08991

-2.40894

 

5.768321

-2.40894

760

5

6.633318

4.7

31.4

0.149681

0.850319

1.176029

0.162144

-1.81927

 

6.633318

-1.81927

860

6

6.756932

5.7

31.4

0.181528

0.818472

1.221789

0.200316

-1.60786

 

6.756932

-1.60786

920

7

6.824374

6.7

31.4

0.213375

0.786625

1.271254

0.240004

-1.4271

 

6.824374

-1.4271

1,000

8

6.907755

7.7

31.4

0.245222

0.754778

1.324893

0.281331

-1.26822

 

6.907755

-1.26822

1,090

9

6.993933

8.7

31.4

0.277069

0.722931

1.383258

0.324441

-1.12565

 

6.993933

-1.12565

1,990

10

7.59589

9.7

31.4

0.308916

0.691084

1.447002

0.369494

-0.99562

 

7.59589

-0.99562

1,990

11

7.59589

10.7

31.4

0.340763

0.659237

1.516905

0.416672

-0.87546

 

7.59589

-0.87546

2,040

12

7.620705

11.7

31.4

0.37261

0.62739

1.593905

0.466187

-0.76317

 

7.620705

-0.76317

2,810

13

7.94094

12.7

31.4

0.404457

0.595543

1.67914

0.518282

-0.65724

 

7.94094

-0.65724

2,980

14

7.999679

13.7

31.4

0.436304

0.563696

1.774006

0.57324

-0.55645

 

7.999679

-0.55645

3,540

15

8.171882

14.7

31.4

0.468151

0.531849

1.880233

0.631395

-0.45982

 

8.171882

-0.45982

3,680

16

8.210668

15.7

31.4

0.499998

0.500002

1.999992

0.693143

-0.36652

 

8.210668

-0.36652

4,990

17

8.515191

16.7

31.4

0.531845

0.468155

2.136044

0.758956

-0.27581

 

8.515191

-0.27581

5,320

18

8.579229

17.7

31.4

0.563692

0.436308

2.291958

0.829407

-0.18704

 

8.579229

-0.18704

8,010

19

8.988446

18.7

31.4

0.595539

0.404461

2.472426

0.9052

-0.0996

 

8.988446

-0.0996

8,600

20

9.059517

19.7

31.4

0.627386

0.372614

2.683742

0.987212

-0.01287

 

9.059517

-0.01287

8,930

21

9.097172

20.7

31.4

0.659233

0.340767

2.934556

1.076556

0.073767

 

9.097172

0.073767

10,280

22

9.237956

21.7

31.4

0.69108

0.30892

3.237083

1.174673

0.160989

 

9.237956

0.160989

10,570

23

9.265775

22.7

31.4

0.722927

0.277073

3.609156

1.283474

0.24957

 

9.265775

0.24957

10,690

24

9.277064

23.7

31.4

0.754774

0.245226

4.077869

1.405575

0.340446

 

9.277064

0.340446

12,150

25

9.405084

24.7

31.4

0.786621

0.213379

4.686495

1.544685

0.43482

 

9.405084

0.43482

12,690

26

9.44857

25.7

31.4

0.818468

0.181532

5.508668

1.706323

0.534341

 

9.44857

0.534341

15,060

27

9.619798

26.7

31.4

0.850315

0.149685

6.680692

1.899222

0.641444

 

9.619798

0.641444

19,670

28

9.88685

27.7

31.4

0.882162

0.117838

8.48622

2.138444

0.760078

 

9.88685

0.760078

19,830

29

9.894951

28.7

31.4

0.914009

0.085991

11.62911

2.453511

0.89752

 

9.894951

0.89752

20,880

30

9.946547

29.7

31.4

0.945856

0.054144

18.46923

2.916106

1.070249

 

9.946547

1.070249

22,850

31

10.03671

30.7

31.4

0.977703

0.022297

44.84888

3.803299

1.335869

 

10.03671

1.335869

 

N=31

 

 

 

 

 

 

 

 

 

 

 

Temperature controller

  • For each of the Weibull Probability Plots drawn in (a), construct the best-fit straight line(s) connecting failure data points, and estimate the shape parameter and scale parameter for each best-fit straight line(s).  

ANSWERS

For the best-fit straight lines, check the figures (from fig 1 to 10).

The shape parameter is the slope of the best-fit straight line and is determined as follows:

Shape parameter= change in Yi/change in ln t

Hence : shape parameter 1: (0—2)/8.5-6= 0.76923 { Note that the points (8.5,0) and (6,-2) can be deduced from figure 1 in the line of best-fit. To get shape parameter, use the gradient formula, that is: change in Y/change in X and substitute the points above); repeat the same for all figures 2 to 10}

The scale parameter is derived from the intersection of the 63.2% of the y-axis range of data with the weibull distribution plot.  {In other words, we determine the 63.2% of the total distance in the Y axis, then mark off the point on the Y axis, next draw a horizontal line that is parallel to the x axis and perpendicular to the Y axis crossing at the marked point, that is, the 63.2% of the total distance. Also note that, in order to get the 63.2% mark point, we must add it to the smallest data point. Note that the total distance is the difference between the largest data point and the smallest data point, and this is the range. In this case, from all figures, it can be seen that the smallest data point is negative hence the range will be just addition as shown below, therefore, the intersection of the horizontal line and the line of best-fit tracing it downwards to the X axis gives the value of scale parameter}.

This is done as follows:

In the first graph, the range is 6 , that is :(2—4)= 6 hence : 0.632 x 6 = 3.792

Then drawing the line (check figure 1), y= 3.792 + -4 = -0.208

Hence scale parameter is x= 8.5 (note that this is just but estimation as the graphs could not locate decimals)

Shape parameter 2: (0—2)/9.5-8= 1.3333

For this case, repeat the procedure in figure 1 above hence:

Range= 4+1.5 = 5.5

0.632x 5.5 = 3.476

Y= 3.476-4 = -0.524

Hence X= 9.5

Shape parameter 3: (0—3.5)/9.5-6 = 1.000

Scale parameter3: Range = 4+1 = 5

0.632 x5= 3.16

Y= 3.16+-4= -0.84

X= 9

Shape parameter 4: (0—3.5)/10-6= 0.875

Scale parameter 4: range= 4+1.2 = 5.2

0.632x5.2 = 3.286

Y= 3.286-4= -0.714

X= 9.0

Shape parameter 5: (6—1.5)/2-0= 3.75

Scale parameter 5: range= 1+2.5= 3.5

0.632x3.5= 2.212

Y= 2.212-1= 1.212

Hence x= 8.5

Shape parameter 6: 0.75—1.75/8-2=0.41667

Scale parameter 6: range = 3+1.5 = 4.5

0.632 x 4.5= 2.844

Y= 2.844+ -3= -0.156

X= 8.02 (refer to figure 7)

Shape parameter 7: (0—2.5)/7-5= 1.25

Scale parameter 7: range= 3.5+1.5= 5.0

0.632x5.0= 3.16

Y= 3.16-3.5 = -0.34

X= 6.5 (refer to figure 7)

Shape parameter 8: 0—2/8.2-7= 1.6667

Scale parameter 8: range= 1.2+3.5 = 4.7

0.632x4.7= 2.9704

Y= 2.9704-3.5 = -0.5296

X= 7.9 (refer to figure 8)

Shape parameter 9: 6.5-0/9—3=0.54167

Scale parameter 9: 1.5+4= 5.5

0.632x5.5= 3.476

Y= 3.476-4= -0.524

X= 8.5 (refer to figure 9)

 

Shape parameter 10: 1—3/10-5.5= 0.8889

Scale parameter 10: range = 1.2+4= 5.2

0.632x5.2= 3.2864

Y= 3.2864-4= -0.7136

Hence x= 8.1 (refer to figure 10)

  • Comment on the failure patterns exhibited by each of the ten (10) components in the air conditioning and pressurisation system and estimate the MTBF values, where applicable.  Appraise one usage of the MTBF data.

ANSWERS

 The graphs above exhibit a generally uniform failure pattern. Therefore, in selecting the maintenance option for each case will a bit simple as one strategy can fit all (of course with slight modifications)  (SAE JA, 2002). The failure is almost linearly distributed as shown in the plots. Admittedly, the best approach would be preventive maintenance where failure is predicted before it occurs and necessary action is taken such as replacements, lubrication among others (NAVAIR, 2005). However in specific terms the following strategies shall be adopted:

MTBF is often used in predicting the subsequent failures by checking at the patterns of failure henc effective maintenance strategy can be drafted. The MTBF values are obtained via finding the antilog of the respective scale parameters:

The failure pattern exhibited by each is described as follows:

Graphs

PATTERN EXHIBITED

scale parameter

MTBF

1

Infant mortality since there is constant wear rate

8.5

4969.101

2

Similar pattern exhibited

9.5

13524.9

3

Similar pattern exhibited

9

8197.962

4

Similar pattern exhibited

9

8197.962

5

Similar pattern exhibited

8.5

4969.101

6

Similar pattern exhibited

8.02

3072.888

7

Similar pattern exhibited

6.5

670.7572

8

Similar pattern exhibited

7.9

2724.985

9

Similar pattern exhibited

8.5

4969.101

10

Similar pattern exhibited

8.1

3329.165

  • Recommend the appropriate maintenance option for each of the ten (10) components in the air conditioning and pressurization system. Note that some of these components may exhibit more than one failure pattern over its lifetime.

The air conditioning and pressurization system is one of the most essential subsystems in the aircraft. Failure of one component, either hidden or exposed, can have irreparable damage on the aircraft performance in the long run. It is therefore necessary that aircraft engineers stay abreast with the functioning state of each component. Reliability centred maintenance approach is one of the methods used to study the failure patterns of these components (SAE JA1011, 1999). Therefore, the report hereinafter provides an analysis of the failure patterns of these components using Weibull distribution method. Reliability centered maintenance analysis of the aircraft pressure control system was done via Weibull distribution for each part as illustrated in tables 1 to 10.

The table illustrates more specifically the maintenance strategies to adopted:

COMPONENT

MAINTENANCE STRATEGY

Cockpit temperature controller

Replacements since preventive maintenance would be cheaper to undertake and for safety reasons

Cabin temperature controller

Replacements is the best option due to cost effectiveness

SOV 2

Condition monitoring on a regular basis , it is a safety risk

Pressure SOV

Condition monitoring on a regular basis, it is a safety risk

Cockpit temperature modulating valve

Prior fault finding as a preventive inspection method

ECS

Replacements is most necessary

Cabin duct temp sensor

Condition monitoring is the best option since it is a safety risk

Cockpit overtemp S/W

Replacements is the best strategy in this case

Cabin temp controller

Regular inspection and servicing is necea

Cabin temp sensor

 

As illustrated above, failure of one component may lead to failure of the entire system. It is therefore crucial that the engineer develops an effective program to either prevent or minimize failure. Although preventive maintenance is costly to implement, however, in the long run it ensures operational stability and safety is maintained which then translates to better working conditions and increased profitability (SAE JA., 2000).

References

NAVAIR 00-25-403. (2005) “Guidelines for the Naval Aviation Reliability-Centered Maintenance Process,”

SAE JA1011.  (1999). “Evaluation Criteria for Reliability-Centered Maintenance (RCM) Processes,”

SAE JA1012. (2002) “A Guide to the Reliability-Centered Maintenance (RCM) Standard,”

SAE JA.  (2000).Defence Standard 02-45 (NES 45)

SAE JA. (2000). Requirements for the Application of Reliability-Centred Maintenance Techniques to HM Ships, Submarines, Royal Fleet Auxiliaries and other Naval Auxiliary Vessels

Cite This Work

To export a reference to this article please select a referencing stye below:

My Assignment Help. (2021). EAS437 Reliability Centred Maintenance. Retrieved from https://myassignmenthelp.com/free-samples/eas437-reliability-centred-maintenance/evaluation-criteria-for-reliability.html.

My Assignment Help (2021) EAS437 Reliability Centred Maintenance [Online]. Available from: https://myassignmenthelp.com/free-samples/eas437-reliability-centred-maintenance/evaluation-criteria-for-reliability.html
[Accessed 22 November 2024].

My Assignment Help. 'EAS437 Reliability Centred Maintenance' (My Assignment Help, 2021) <https://myassignmenthelp.com/free-samples/eas437-reliability-centred-maintenance/evaluation-criteria-for-reliability.html> accessed 22 November 2024.

My Assignment Help. EAS437 Reliability Centred Maintenance [Internet]. My Assignment Help. 2021 [cited 22 November 2024]. Available from: https://myassignmenthelp.com/free-samples/eas437-reliability-centred-maintenance/evaluation-criteria-for-reliability.html.

Get instant help from 5000+ experts for
question

Writing: Get your essay and assignment written from scratch by PhD expert

Rewriting: Paraphrase or rewrite your friend's essay with similar meaning at reduced cost

Editing: Proofread your work by experts and improve grade at Lowest cost

loader
250 words
Phone no. Missing!

Enter phone no. to receive critical updates and urgent messages !

Attach file

Error goes here

Files Missing!

Please upload all relevant files for quick & complete assistance.

Plagiarism checker
Verify originality of an essay
essay
Generate unique essays in a jiffy
Plagiarism checker
Cite sources with ease
support
close