Get Instant Help From 5000+ Experts For
question

Writing: Get your essay and assignment written from scratch by PhD expert

Rewriting: Paraphrase or rewrite your friend's essay with similar meaning at reduced cost

Editing:Proofread your work by experts and improve grade at Lowest cost

And Improve Your Grades
myassignmenthelp.com
loader
Phone no. Missing!

Enter phone no. to receive critical updates and urgent messages !

Attach file

Error goes here

Files Missing!

Please upload all relevant files for quick & complete assistance.

Guaranteed Higher Grade!
Free Quote
wave

Descriptive Statistics for Batch 1

Question:

Using SPSS, compare the three batches in terms of their arithmetic mean tablet weight.Explain the choice of the statistical test(S) employed and provide detailed results and discussion.

We have to compare the three batches in terms of their arithmetic mean tablet weight. For this comparison purpose, we have to see some descriptive statistics for these three batches. We have to use the one way ANOVA test for comparison of means of three batches. We have to use the SPSS for statistical analysis purpose. Let us see all this comparison in detail.

First we have to see the descriptive statistics for the first batch. We know that descriptive statistics consist of the mean, standard deviation, variance, minimum, kurtosis, etc. All descriptive statistics for the first batch is given in the following table:

Descriptive Statistics

N

Minimum

Sum

Mean

Std. Deviation

Variance

Batch1

20

.35

7.37

.3686

.01546

.000

Valid N (listwise)

20


Some other descriptive statistics for the first batch are given in the following table:

Descriptive Statistics

N

Range

Maximum

Mean

Skewness

Kurtosis

Statistic

Statistic

Statistic

Std. Error

Statistic

Std. Error

Statistic

Std. Error

Batch1

20

.05

.39

.00346

.103

.512

-1.418

.992

Valid N (listwise)

20


The box plot for the weights of first batch is given below:

Now, let us see the descriptive statistics for the weights of second batch. All descriptive statistics for the weights of second batch are given in the following two tables:

Descriptive Statistics

N

Minimum

Sum

Mean

Std. Deviation

Variance

Batch2

20

.35

7.40

.3699

.01636

.000

Valid N (listwise)

20

Descriptive Statistics

N

Range

Maximum

Mean

Skewness

Kurtosis

Statistic

Statistic

Statistic

Std. Error

Statistic

Std. Error

Statistic

Std. Error

Batch2

20

.05

.39

.00366

-.020

.512

-1.657

.992

Valid N (listwise)

20


The box plot for the weights of the second batch is given as below:

Now, we have to see the some descriptive statistics for the weights of the third batch. The descriptive statistics for the weights of third batch are given in the following table:

Descriptive Statistics

N

Minimum

Sum

Mean

Std. Deviation

Variance

Batch3

20

.38

7.95

.3974

.00885

.000

Valid N (listwise)

20

Descriptive Statistics

N

Range

Maximum

Mean

Skewness

Kurtosis

Statistic

Statistic

Statistic

Std. Error

Statistic

Std. Error

Statistic

Std. Error

Batch3

20

.03

.41

.00198

-.440

.512

-1.107

.992

Valid N (listwise)

20


The box plot for the weights of the third batch is given as below:

Now, we have to compare these three batches or average weights of these three batches. For comparison of means of weights of these three batches, we have to use the one way ANOVA test. We take significance level for this test as alpha = 0.05.

The null and alternative hypothesis for this test is given as below:

Null hypothesis: H0: The means of weights for all three batches are same.

Alternative hypothesis: Ha: The means of weights for all three batches are not same.

In statistical words, these hypotheses are written as below:

H0: µ1 = µ2 = µ3 V/s Ha: µ1 ≠ µ2 ≠ µ3

Where, µ1 is the mean for weights for the first batch, µ2 is the mean for weights for the second batch and µ3 is the mean for weights of third batch.

The ANOVA table by using SPSS is given as below:

ANOVA

Weight 

Sum of Squares

df

Mean Square

F

Sig.

Between Groups

.011

2

.005

27.191

.000

Within Groups

.011

57

.000

Total

.022

59


For this ANOVA table, we get the p-value as 0.000 and we have level of significance or alpha value = 0.05. We know the decision rule is given as below:

We reject the null hypothesis if the p-value is less than the alpha value or level of significance and we do not reject the null hypothesis if the p-value is greater than the alpha value or level of significance.

Here we have alpha value = 0.05 and p-value = 0.05

That is, here p-value < alpha value

So, we reject the null hypothesis that the means of weights for all three batches are same.

Descriptive Statistics for Batch 2

In the next topic we have to compare the means and standard deviations for the tablet tensile strength and tablet porosity. Also we have to find the some intervals for means. Let us see the descriptive statistics for tensile strength and porosity in detail. The means and standard deviations are given in the following table:

Descriptive Statistics

N

Mean

Std. Deviation

TSB1

10

10.5460

.02066

TSB2

10

10.0500

.00000

TSB3

10

10.4200

.12293

TPB1

10

3.5290

.02234

TPB2

10

3.6650

.15219

TPB3

10

3.6800

.31903

Valid N (listwise)

10


TSB1 = Tensile strength for batch 1

TSB2 = Tensile strength for batch 2

TSB3 = Tensile Strength for batch 3

TPB1 = Tablet porosity for batch 1

TPB2 = Tablet porosity for batch 2

TPB3 = Tablet porosity for batch 3

The overall mean and standard deviation for the strength and porosity is given as below:

Descriptive Statistics

Mean

Std. Deviation

N

Strength

10.3387

.22508

30

Porosity

3.6247

.20905

30


One standard deviation limits from the mean for the strengths and porosity of these three batches are given as below:

Batch

Tensile strength

Porosity

Lower

Upper

Lower

Upper

Batch 1

10.52534

10.56666

3.50666

3.55134

Batch 2

10.05

10.05

3.51281

3.81719

Batch 3

10.29707

10.54293

3.36097

3.99903


Now, in the next topic we have to see the relationship between the strength and porosity. We have to check whether there is any linear relationship or association between the strength and porosity exists or not. For this purpose we have to find the correlation coefficient between the two variables strength and porosity.

The SPSS output for the correlation coefficient is given as below:

Correlations

Strength

Porosity

Strength

Pearson Correlation

1

-.092

Sig. (2-tailed)

.627

N

30

30

Porosity

Pearson Correlation

-.092

1

Sig. (2-tailed)

.627

N

30

30


The correlation coefficient between the two variables strength and porosity is found as 0.627, this is a positive correlation coefficient. This indicates that there is positive considerable linear relationship or association exists between the two variables strength and porosity.

Let us see regression analysis for above two variables. The SPSS output is given below:

Descriptive Statistics

Mean

Std. Deviation

N

Strength

10.3387

.22508

30

Porosity

3.6247

.20905

30


Below is the correlation coefficient for these two variables.

Correlations

Strength

Porosity

Pearson Correlation

Strength

1.000

-.092

Porosity

-.092

1.000

Sig. (1-tailed)

Strength

.

.314

Porosity

.314

.

N

Strength

30

30

Porosity

30

30


The description for the variables is given in the following table:

Variables Entered/Removeda

Model

Variables Entered

Variables Removed

Method

1

Porosityb

.

Enter

a. Dependent Variable: Strength

b. All requested variables entered.


The model summary for the regression analysis is given below:

Model Summaryb

Model

R

R Square

Adjusted R Square

Std. Error of the Estimate

Durbin-Watson

1

.092a

.009

-.027

.22808

.556

a. Predictors: (Constant), Porosity

b. Dependent Variable: Strength


For the above model summary, we get the coefficient of determination as 0.009, this means that only 0.9% of the variation in the dependent variable is explained by the independent variable.

The ANOVA table for the regression analysis is given below:

ANOVAa

Model

Sum of Squares

df

Mean Square

F

Sig.

1

Regression

.013

1

.013

.241

.627b

Residual

1.457

28

.052

Total

1.469

29

a. Dependent Variable: Strength

b. Predictors: (Constant), Porosity


For above ANOVA, we get the p-value as 0.627 which is greater than the level of significance or alpha value = 0.05, so we do not reject the null hypothesis that the given regression model is significant.

The coefficients for the regression equation are given below:

Coefficientsa

Model

Unstandardized Coefficients

Standardized Coefficients

t

Sig.

95.0% Confidence Interval for B

Collinearity Statistics

B

Std. Error

Beta

Lower Bound

Upper Bound

Tolerance

VIF

1

(Constant)

10.699

.736

14.546

.000

9.192

12.206

Porosity

-.099

.203

-.092

-.491

.627

-.514

.316

1.000

1.000

a. Dependent Variable: Strength

Collinearity Diagnosticsa

Model

Dimension

Eigenvalue

Condition Index

Variance Proportions

(Constant)

Porosity

1

1

1.998

1.000

.00

.00

2

.002

35.299

1.00

1.00

a. Dependent Variable: Strength

Residuals Statisticsa

Minimum

Maximum

Mean

Std. Deviation

N

Predicted Value

10.2914

10.3908

10.3387

.02079

30

Residual

-.30007

.28871

.00000

.22412

30

Std. Predicted Value

-2.274

2.510

.000

1.000

30

Std. Residual

-1.316

1.266

.000

.983

30

a. Dependent Variable: Strength

References:

•    Abramowitz, M., and Stegun, I.A., "Handbook of mathematical functions", Dover publications, New York, 1964

•    Crow, E.L., Davis, F.A., and Maxfield, M.W. "Statistics Manual", Dover publications, Inc New York, 1960

•    Fraser, D.A.S., "Nonparametric methods in statistics", John Wiley&Sons, New York, Chapman&Hall, London, 1957.

•    Kanji, G.K., "100 statistical tests", Sage publications London, Newbury Park, New Dehli.

•    Papoulis, Athanasios "Probability and Statistics" Prentence-Hall International Editions.

•    Siegel, S. "Non-parametric statistics for the behavioral sciences", McGraw-Hill book company, Inc. New York, Toronto, London, 1956

•    Van den Brink, W.P., and Koele, P. "Statistiek, Deel 3: Toepassingen", Boom Meppel Amsterdam

•    Abraham, B., & Ledolter, J. (1983). Statistical methods for forecasting. New York: Wiley.

•    Adorno, T. W., Frenkel-Brunswik, E., Levinson, D. J., & Sanford, R. N. (1950). The authoritarian personality. New York: Harper.

•    Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. Proceedings of the 1993 ACM SIGMOD Conference, Washington, DC.

•    Agrawal, R. & Srikant, R. (1994). Fast algorithms for mining association rules. Proceedings of the 20th VLDB Conference. Santiago, Chile.

•    Bain, L. J. (1978). Statistical analysis of reliability and life-testing models. New York: Decker.

•    Bain, L. J. and Engelhardt, M. (1989) Introduction to Probability and Mathematical Statistics. Kent, MA: PWS.

•    Baird, J. C. (1970). Psychophysical analysis of visual space. New York: Pergamon Press.

Cite This Work

To export a reference to this article please select a referencing stye below:

My Assignment Help. (2016). Comparison Of Mean Tablet Weight For Three Different Batches In An Essay. (70 Characters). Retrieved from https://myassignmenthelp.com/free-samples/pharmaceutics-assignment.

"Comparison Of Mean Tablet Weight For Three Different Batches In An Essay. (70 Characters)." My Assignment Help, 2016, https://myassignmenthelp.com/free-samples/pharmaceutics-assignment.

My Assignment Help (2016) Comparison Of Mean Tablet Weight For Three Different Batches In An Essay. (70 Characters) [Online]. Available from: https://myassignmenthelp.com/free-samples/pharmaceutics-assignment
[Accessed 23 November 2024].

My Assignment Help. 'Comparison Of Mean Tablet Weight For Three Different Batches In An Essay. (70 Characters)' (My Assignment Help, 2016) <https://myassignmenthelp.com/free-samples/pharmaceutics-assignment> accessed 23 November 2024.

My Assignment Help. Comparison Of Mean Tablet Weight For Three Different Batches In An Essay. (70 Characters) [Internet]. My Assignment Help. 2016 [cited 23 November 2024]. Available from: https://myassignmenthelp.com/free-samples/pharmaceutics-assignment.

Get instant help from 5000+ experts for
question

Writing: Get your essay and assignment written from scratch by PhD expert

Rewriting: Paraphrase or rewrite your friend's essay with similar meaning at reduced cost

Editing: Proofread your work by experts and improve grade at Lowest cost

loader
250 words
Phone no. Missing!

Enter phone no. to receive critical updates and urgent messages !

Attach file

Error goes here

Files Missing!

Please upload all relevant files for quick & complete assistance.

Plagiarism checker
Verify originality of an essay
essay
Generate unique essays in a jiffy
Plagiarism checker
Cite sources with ease
support
close