Get Instant Help From 5000+ Experts For
question

Writing: Get your essay and assignment written from scratch by PhD expert

Rewriting: Paraphrase or rewrite your friend's essay with similar meaning at reduced cost

Editing:Proofread your work by experts and improve grade at Lowest cost

And Improve Your Grades
myassignmenthelp.com
loader
Phone no. Missing!

Enter phone no. to receive critical updates and urgent messages !

Attach file

Error goes here

Files Missing!

Please upload all relevant files for quick & complete assistance.

Guaranteed Higher Grade!
Free Quote
wave

1. Discuss and formulate the scenarios relevant for answering different questions
2. Demonstrate the interpretation of computer output to answer different questions 

Analysis of Data

The use of information technology has affected the business process in all aspect. But use of information technology in Supply chain management, has totally chained the face of doing business, all the jargons like E-Commerce, EDI, ERP, Barcode, QR code, 3PL, all are only possible after the application of computer in supply chain management. Here we will see that how optimization can be done in limited resources with the help of computer application (Szpilko, 2017).

As given in the question, the first work to John smith is the analyses the data as given in question, the normal demand of Mech. wire is around 4276 unit, and average output is around 2400 unit/month, Therefore it clear that, we have to arrange all the resources to maximize the profit from the given output. The main difference in output and demand is due to the reason, that, the plant’s machine utilization is around 63%. By analysis and calculation we try to find, how we can optimize the available machine and resources in give condition. We will solve this problem with the help of excel solver in Microsoft Excel 2016 (Štefan Kudlá?, 2017). 

The given situation, is suitable for linear programming, and this will be done by using excel solver, because, if we see the data we can analyze, LP is only the tools which can be used for this situation, The summary of data is as given below,

1 Next Month Order

Product

Units ordered

W0075C

1,400

W0033C

250

W0005X

1,510

W0007X

1,116

2 Standard Cost

Product

Material

Labour

Overhead

Selling Price

W0075C

$33.00

$9.90

$23.10

$100.00

W0033C

$25.00

$7.50

$17.50

$80.00

W0005X

$35.00

$10.50

$24.50

$130.00

W0007X

$75.00

$11.25

$64.75

$175.00

4 Plant Capacity

Drawing

Extrusion

Winding

Packaging

4,000

4,200

2,000

2,300

The above plant capacity data is full capacity data, but in question it is given that, the average machine utilization is 63% and 5% production is going to rework from winding, in this condition the utilized plant capacity is given as follows. 

6 Capacity utilised(Actual)

2,520

2,646

1,197

1,449

And finally the bill of labor is given as

5

Bill of labour (hours/unit)

Product

Drawing

Extrusion

Winding

Packaging

W0075C

1

1

1

1

W0033C

2

1

3

0

W0005X

0

4

0

3

W0007X

1

1

0

2

From the above situation we will formulate the linear programming which is as follows,

The actual profit /unit of wire can be taken as

Actual profit = Sell Price – (Material + labor + overhead)

The profit calculated for four different products is as follows,

W0075C

W0033C

W0005X

W0007X

$34.00

$30.00

$60.00

$25.00

Suppose, product W0075C is denoted as X1, similarly other product, W0033C, W0005X, W0007X is X2, X3, and X4 respectively, then our total profit will be calculated as

34x X1 + 30x X2 + 60x X3 + 25x X4 = Z, this will be objective which I have to maximize according to the above data.

The constraint can be given as

For plant capacity,

X1 + 2X2 + X4   2520 …………(i)

X1 + X2 + 4X3 + X4   2646 …..... (ii)

Formulating the Linear Programming

X1 + 3X2   1197 ……………..…(iii)

X1 + 3X3 + 2X4  1449 …………..(iv)

For demand capacity

X1  1400 …………………..(v)

X2  250 ……………………(vi)

X3  1510…………….……..(vii)

X4  1116, ……………..(viii)

Two more constrains is there because of commitment done by Vivian Napoli.

X1  150 ………………(ix)

X4  600 ………………(x)

Now to calculate the maximum capacity from the given data, we have to run the excel solver and put all the data as given in excel sheet.

Product

W0075C

W0033C

W0005X

W0007X

Units

249

250

0

600

Profit/Unit

$34.00

$30.00

$60.00

$25.00

$30,966.00

Available constraints

W0075C orders

1

0

0

0

249.00

<=

1400

W0033C orders

0

1

0

0

250.00

<=

250

W0005X orders

0

0

1

0

0.00

<=

1510

W0007X orders

0

0

0

1

600.00

<=

1116

Drawing time

1

2

0

1

1349.00

<=

2520

Extrusion time

1

1

4

1

1099.00

<=

2646

Winding time

1

3

0

0

999.00

<=

1197

Packaging time

1

0

3

2

1449.00

<=

1449

Minimum W0075C

1

0

0

0

249.00

>=

150

Minimum W0007X

0

0

0

1

600.00

>=

600

The cell given in green is calculated maximum profit for given condition. The answer report and sensitivity analysis is given in excel sheet.

If we will see the utilisation of different section we will observe that, the % utilisation of different section i.e. Drawing, Extrusion, Winding and Packaging, we see that, it is around 53%, 41%, 83% and 100% for packaging, in this condition, it is clear that, almost half of the manpower in drawing section and extrusion section is unused, If by any means If we shift the manpower to winding, and packaging section, we can increase the output,

Suppose by shifting the manpower, we have increased the rated capacity of winding and packaging, in this condition we must put the maximum value of winding and packaging.

After running the solver but putting the value 2000 and 2300 for winding and packaging, the result is as follows

Product

W0075C

W0033C

W0005X

W0007X

Units

1100

250

0

600

Profit/Unit

$34.00

$30.00

$60.00

$25.00

$59,900.00

Available constraints

W0075C orders

1

0

0

0

1100.00

<=

1400

W0033C orders

0

1

0

0

250.00

<=

250

W0005X orders

0

0

1

0

0.00

<=

1510

W0007X orders

0

0

0

1

600.00

<=

1116

Drawing time

1

2

0

1

2200.00

<=

2520

Extrusion time

1

1

4

1

1950.00

<=

2646

Winding time

1

3

0

0

1850.00

<=

2000

Packaging time

1

0

3

2

2300.00

<=

2300

Minimum W0075C

1

0

0

0

1100.00

>=

150

Minimum W0007X

0

0

0

1

600.00

>=

600

From the above solution it is clear that, if we shift the worker bay any means from drawing and extrusion department, the profit can be increase in such a way that, we can fulfil the required condition and earn maximum profit as profit $ 59,900.

The solution optimised solution suggest that, the product W0005X is not produced to maximise the profit, even profit margin for W0005X is highest, but it is also taking resources highest. The commitment done by Vivian Napoli can be easily fulfilled with the above condition,

Therefore, main problem is here is low utilisation of machine, and the mains constraints are packaging time, it is still clear from the above table is that if by any means we increase the packaging limit we can produce more with the given constraints, even if we increase the packaging by 3000, the almost all resources will be utilised and profit will be around $ 77000,

The best recommendation for john smith is that, it should stop producing W0005X, because resources are greatly utilised and any how increase the capacity of packaging department, so that maximum profit can be done without any further investment. The other recommendation is that the number of rejection should be reduced to, because this 5% will directly add to the profit margin.

Running Excel Solver

If we want to perform the sensitivity analysis for this problem, we have to develop table to identify the related information obtained from the sensitivity analysis, but sensitivity is not the report which can be presented directly to the meeting, we must change into lucrative form so that it can be presented.

The Sensitivity analysis of the above problem is given as follows,

Microsoft Excel 14.0 Sensitivity Report

Worksheet: [806856.xlsx]Sheet1

Report Created: 30-09-2018 04:08:42

Variable Cells

 

 

Final

Reduced

Objective

Allowable

Allowable

Cell

Name

Value

Cost

Coefficient

Increase

Decrease

$J$4

Units W0075C

1100

0

34

1E+30

14

$K$4

Units W0033C

250

0

30

1E+30

30

$L$4

Units W0005X

0

-42

60

42

1E+30

$M$4

Units W0007X

600

0

25

43

1E+30

Constraints

 

 

Final

Shadow

Constraint

Allowable

Allowable

Cell

Name

Value

Price

R.H. Side

Increase

Decrease

$N$10

W0075C orders

1100

0

1400

1E+30

300

$N$11

W0033C orders

250

30

250

50

250

$N$12

W0005X orders

0

0

1510

1E+30

1510

$N$13

W0007X orders

600

0

1116

1E+30

516

$N$14

Drawing time

2200

0

2520

1E+30

320

$N$15

Extrusion time

1950

0

2646

1E+30

696

$N$16

Winding time

1850

0

2000

1E+30

150

$N$17

Packaging time

2300

34

2300

150

950

$N$18

Minimum W0075C

1100

0

150

950

1E+30

$N$19

Minimum W0007X

600

-43

600

475

75

As per the report given above, we can analyses the situation; we can compare the production report with actual order report and can see that how much I have fulfilled the demand. In this way we can also show the way for management that which product is more necessary to produce. 

Product

Units ordered

Order Produced

Difference

W0075C

1,400

1100

300

W0033C

250

250

0

W0005X

1,510

0

1510

W0007X

1,116

600

516

The total product produce is 1950 against the order 4276, in this production; we have fulfilled the demand of product W0033C. Additionally I have fulfilled the demand of Vivian Napoli. The production of W0005X is not taken into consideration by solver, even it is the product of maximum margin, but in terms of resources, this product is grabbing too many resources, therefore for maximum profit, the product W0005X is stopped.

Further looking into the Sensitivity analysis we can see that, we have to put the actual order and find the differences the cost is gone up by $42 and profit go by $ 102, but removing it cost is decrease by $42 and we get maximum profit after removing the W0005X.

Another aspect we can analyse is that, the utilisation of resources in each department.

Department

Given Cap.

Resources consumed

Unutilised

Drawing

4000

2200

1800

Extrusion

4200

1950

2250

Winding

2000

1850

150

Packaging

2300

2300

0

From the above table we can see that, the as per capacity of plant, the resources unitised are almost 50% for drawing and extrusion, and resources for winding is around 95%, but resources for packaging is fully utilised. Therefore, packaging is the bottleneck for the operation, we must exploit and subordinate the packaging section, so that, further resources can be utilized. For fully utilising the other resources, we must increase the packaging resource up to 3000 hr.

The limit report is also providing the same thing

Microsoft Excel 14.0 Limits Report

Worksheet: [806856.xlsx]Sheet1

Report Created: 30-09-2018 04:08:42

 

Objective

Cell

Name

Value

$N$5

Profit/Unit

? 59,900.00

 

Variable

Lower

Objective

Upper

Objective

Cell

Name

Value

Limit

Result

Limit

Result

$J$4

Units W0075C

1100

150

27600

1100

59900

$K$4

Units W0033C

250

0

52400

250

59900

$L$4

Units W0005X

0

0

59900

0

59900

$M$4

Units W0007X

600

600

59900

600

59900

The binding of constraints can also be visible in this section

Cell

Name

Cell Value

Formula

Status

Slack

$N$10

W0075C orders

1100.00

$N$10<=$P$10

Not Binding

300

$N$11

W0033C orders

250.00

$N$11<=$P$11

Binding

0

$N$12

W0005X orders

0.00

$N$12<=$P$12

Not Binding

1510

$N$13

W0007X orders

600.00

$N$13<=$P$13

Not Binding

516

$N$14

Drawing time

2200.00

$N$14<=$P$14

Not Binding

320

$N$15

Extrusion time

1950.00

$N$15<=$P$15

Not Binding

696

$N$16

Winding time

1850.00

$N$16<=$P$16

Not Binding

150

$N$17

Packaging time

2300.00

$N$17<=$P$17

Binding

0

$N$18

Minimum W0075C

1100.00

$N$18>=$P$18

Not Binding

950.00

$N$19

Minimum W0007X

600.00

$N$19>=$P$19

Binding

0.00

Here we can clearly see that the binding of data comes in W0033C order and packaging time. The order is as per demand, but packaging time is something which we can control. 

As we have seen in the table and Sensitivity report above, it clear that, the drawing department is underutilized, in this condition we should not send the temporary labor to drawing department, rather we should send it to packaging department, In fact not need of temporary worker, here, we can utilize own worker of the company to manage the packaging department, One important information from the above reports is that, if we increase packaging hour by 1, out inherited profit will rise by $34, this packaging hour can go up to, 2500 hour without any additional resources. But if we further want to increase the profitability, we have to add some winding hour also, this will give leverage to increase the profit.

Sensitivity Analysis

Conclusion

The use of excel solver becomes very common for purpose of optimization problem. The main reason behind this is easy to use Solver tools given in Microsoft excel. The use of complex mathematical concept is history, when linear programming being solved by Simplex method or any other manual method, in 1950s when linear programing first used in US military, to find the low cost diet with highest nutrition value by Jerry Cornfield, it took 2 years to find the optimized value, but today with the use of computer we can dot in two hours or less.

This is the report which can be presented by John Smith to the management. There are various other possible permutation and combination of data by which we can analyses the result obtained from solver. If manpower is given for department, we can reschedule the entire problem in better optimization using this solver.

Ahmed Ghaithan, A, A, S, D, 2017, Multi-objective optimization model for a downstream oil and gas supply chain, King Fahd University of Petroleum & Minerals, 1(1), pp, 1-20.

Anon, 2016, Lean Six Sigma Applications in Oil and Gas Industry: Case Studies, The Petroleum Institute, 1(1), pp, 1-5.

Barker, J, A, 2014, From the Depths of Despair to the Promise of Presence, 1st ed, New York: Eisenbrauns.

Ba-Shammakh, M, 2009, An Optimization Approach for Integrating Planning and CO2 Mitigation in the Power and Refinery Sectors, University of Waterloo, pp, 1-202.

Choudhary, A, 2014, ANALYSIS AND DESIGN OF SUPPLY CHAIN MODEL FOR A SPECIFIC ORGANISATION, The Macrotheme Review, pp, 1-36.

Jaber, D, S, A, A, 2015, ADNOC group sustainability report, Adnoc journal, pp, 1-11.

Jianhua Dai, S, P, S, L, 2017, Mitigation of Bullwhip Effect in Supply Chain Inventory Management Model, Manufacturing and Management, 1(1), pp, 1-6.

Joseph Geunes, P, P, 2009, Supply chian optimisation, Applied Optimization techniques, 98(1), pp, 1-418.

ling, R, 2017, Investment guide to UAE, Framework for investments journal, 1(1), pp, 1-48.

Mahmood, Y, H, 2015, Capacity consraints management stretegies and supply chian performance of petroleum industries, Business adminitration school journal, 1(1), pp, 1-81.

Michael Talmadge, L, B, P, L, 2016, Optimizing Biorefinery Design and Operations via Linear Programming Models, Symposium on Thermal and Catalytic Sciences, pp, 1-1.

O’Leary, 2014, Introduction to literature review, Literature review, 1(1), pp, 1-9.

Panos Pardalos, D,-Z, D, 2009, Optimisation and logistic challenges in the enterprize, Springer Optimization and Its Applications, 1(1), pp, 1-430.

Raed Hussaian, B, K, 2006, Supply Chain Management in the PetroleumIndustry: Challenges and Opportunities, International Journal of Global Logistics & Supply Chain Management, 1(2), pp, 90-97.

Sharada Vadali, S, C, 2016, Buyer-Supplier Transport Access Measures for Industry Clusters, Texas A&M University System, 1(1), pp, 1-11.

Cite This Work

To export a reference to this article please select a referencing stye below:

My Assignment Help. (2021). Optimization Of Production Through Linear Programming: An Essay.. Retrieved from https://myassignmenthelp.com/free-samples/ops910-supply-chain-analytics/additional-resources.html.

"Optimization Of Production Through Linear Programming: An Essay.." My Assignment Help, 2021, https://myassignmenthelp.com/free-samples/ops910-supply-chain-analytics/additional-resources.html.

My Assignment Help (2021) Optimization Of Production Through Linear Programming: An Essay. [Online]. Available from: https://myassignmenthelp.com/free-samples/ops910-supply-chain-analytics/additional-resources.html
[Accessed 22 December 2024].

My Assignment Help. 'Optimization Of Production Through Linear Programming: An Essay.' (My Assignment Help, 2021) <https://myassignmenthelp.com/free-samples/ops910-supply-chain-analytics/additional-resources.html> accessed 22 December 2024.

My Assignment Help. Optimization Of Production Through Linear Programming: An Essay. [Internet]. My Assignment Help. 2021 [cited 22 December 2024]. Available from: https://myassignmenthelp.com/free-samples/ops910-supply-chain-analytics/additional-resources.html.

Get instant help from 5000+ experts for
question

Writing: Get your essay and assignment written from scratch by PhD expert

Rewriting: Paraphrase or rewrite your friend's essay with similar meaning at reduced cost

Editing: Proofread your work by experts and improve grade at Lowest cost

loader
250 words
Phone no. Missing!

Enter phone no. to receive critical updates and urgent messages !

Attach file

Error goes here

Files Missing!

Please upload all relevant files for quick & complete assistance.

Plagiarism checker
Verify originality of an essay
essay
Generate unique essays in a jiffy
Plagiarism checker
Cite sources with ease
support
close